

Mathematics District 1 • 2014

DO NOT TURN THIS PAGE UNTIL YOU ARE INSTRUCTED TO DO SO!

1. Evaluate: $[2-3(5-7)] + 11 \times (13+17-19)$

(A) 123

(B) 129

(C) 132

(D) 149

(E) 167

2. Let $S = \{s,e,c,o,n,d\}$, $M = \{m,i,n,u,t,e\}$, $H = \{h,o,u,r\}$, and $T = \{t,i,m,e\}$. The number of distinct elements in $(S \cap H) \cup (M \cap T)$ is _____.

(A) 2

(B) 6

(C) 10

 (\mathbf{D}) 4

(E) 5

3. Penni Lesse got a \$2000.00 student loan to help pay her dorm rent. She has to pay it back in 24 equal monthly payments. What will her monthly payments be if the annual interest rate of 3.5% is compounded monthly? (nearest cent)

(A) \$84.80

(B) \$85.63

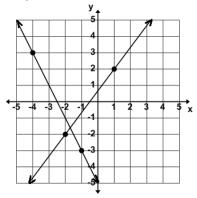
(C) \$86.30

(D) \$89.37

(E) \$90.17

4. If P is 130% of Q and R is 70% of P, then R is what percent of Q?

(A) 100%


(B) 60%

(C) 91%

(D) 86%

(E) 90%

5. The two lines shown intersect at the point (x, y). Find x + y.

(A) -3.777... (B) -3.5 (C) -3.222...

(D) -3.3

(E) - 3.275

6. Let $\frac{x+2}{3x-4} - \frac{4x-1}{2x+3} = \frac{Ax^2 + Bx + C}{Px^2 + Qx + R}$. Find $\frac{A+B+C}{P+Q+R}$.

(A) 2.4

(B) 0.4

(C) -1 (D) -2.4

(E) - 3.6

7. Which of the sets of numbers given is not closed under the operation of addition?

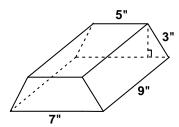
(A) Even numbers

(B) Integers

(C) Irrationals

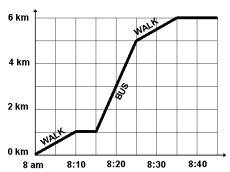
(D) Primes

(E) Rationals


8. Saul T. Baye is fishing in his kayak at Baffin Bay. He starts paddling towards the shore at a rate of 4 miles per hour. How far from shore was he if he makes it to shore in 12 minutes?

(A) 1,184 yds

(B) 1,408 yds


(C) 1,420.8 yds (D) 1,440.2 yds (E) 1,712 yds

- (A) 17 sq. in
- (B) 18 sq. in
- (C) 24 sq. in
- (D) 34 sq. in
- (E) 63 sq. in
- 10. Find the shortest distance from the point (1, 1) to the line 5x + 12y = 60.
 - (A) $1\frac{7}{13}$
- (B) $2\frac{2}{5}$ (C) $3\frac{4}{13}$ (D) 5
- (E) $5\frac{12}{13}$
- 11. A pentagonal rotunda has 17 faces and 35 edges. How many vertices does it have?
 - (A) 15
- **(B)** 20
- (C) 33
- (D) 37
- (E) 50
- 12. Phil Whitwhatter has an empty rectangular water tank that is 10' long, 8' wide, and 6' deep. If Phil puts 2500 gallons of water in the tank, what percent of the tank's capacity contains water? (nearest percent)
 - (A) 48%
- (B) 52%
- (C) 60%
- (D) 63%
- (E) 70%

- 13. The heronian mean of 8 and 18 is: (nearest tenth)
 - (A) 12.7
- **(B)** 13
- (C) 11.1
- (D) 13.6
- (E) 12
- 14. One of the three most famous and well known Zeno paradoxes involves trying to reach a specific point by covering only half of the remaining distance each time. Hence not ever reaching that specific point. This paradox is known as the:
 - (A) Achilles and Tortoise (B) Arrow flight (C) Dichotomy (D) Stadium (E) Grain of Millet
- 15. Willie Makette has to walk and ride a bus to get to school each day. Using the graph below determine the average speed of the bus.

- (A) 14 kmph
- (B) 24 kmph
- (C) 32 kmph
- (D) 40 kmph
- (E) 48 kmph

16.	The probability of scoring at least 120 on the district 1 test in class 1A is 64%. Based	l on this		
probability, if 500 take this test what are the odds of scoring less than 120?				

(A) $\frac{9}{25}$ (B) $\frac{3}{10}$ (C) $\frac{8}{15}$ (D) $\frac{9}{16}$ (E) $\frac{6}{25}$

17. The Millersview *Old-Goats* football team consists of three 25¢ backs, five lopers, seven kneelers, four pass-outers, and a kicker of the bucket. In how many ways can a group of eleven Old Goats be formed such that there is one 25ϕ back, three lopers, five kneelers, and two pass-outers?

(A) 40

(B) 2,943

(C) 3,780

(D) 12,600

(E) 59

18. The first five numbers in row 11 of Pascal's triangle are 1, 11, k, 165, 330, Find k?

(A) 121

(B) 110

(C) 88

(D) 55

(E) 44

19. If $3^{(3x-y)} = 27$ and $5^{(x+5y)} = 3,125$ then $4^{(2x+4y)} =$ _____.

(A) 4.096

(B) 256

(C) 512

(D) 2.048

(E) 65.536

20. Tye Purr and Ed Ittur need to read and edit a 500 page book before it is published. Tye can do it alone in 6 hours 50 minutes. Ed can do it alone in 5 hours 20 minutes. How long would it take them to complete the edits working together? (nearest minute)

(A) 2 hrs 53 min

(B) 3 hrs

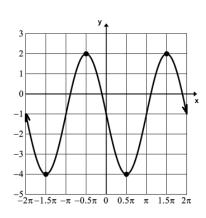
(C) 5 hrs 45 min

(D) 6 hrs 2 min

(E) 6 hrs 5 min

21. How many integral values of n exist such that n > 1 and $\frac{(n+1)!}{(n-1)!} \le 110$

(A) 22


(B) 20

(C) 11

(D) 10

(E) 9

22. Let $y = D + A\sin(Bx - C\pi)$ will produce this graph. If C > 0 then A + B + C + D = ?

(A) 6

(B) 4

(C) 2

(D) - 2

(E) - 3

23. $\sin(2\theta) \times \tan(\theta) + \cos(2\theta)$ is equivalent to:

(A) $\sec(\frac{\pi}{4})$ (B) $\tan(\frac{\pi}{4})$ (C) $\cos(\frac{\pi}{2})$ (D) $\sin(\frac{\pi}{4})$ (E) $\cot(\frac{\pi}{2})$

24.	Fim Burr needs to know how tall a tree is before cutting it down to be sure it doesn't hit a shed. The angle of elevation to the top of the tree is 29° from where is standing. From a point 50 feet closer, the angle of elevation is 34°. How tall is the tree? (nearest inch)						
	(A) 189' 5"	(B) 121' 1"	(C) 155' 6"	(D) 180' 2"	(E) 127' 10"		
25.	. The sum of the coefficients of the 2^{nd} term in the expansion of $(x+1)^2$, the 3^{rd} term of $(x+1)^3$, the 5^{th} term of $(x+1)^5$, and 7^{th} term of $(x+1)^7$ is:						
	(A) 10	(B) 14	(C) 17	(D) 18	(E) 22		
26.	Find C + D if the	the triangular pa	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1 4 1 6 1			
	(A) 160	(B) 112	(C) 50	(D) 72	(E) 120		
27.	Let $f(x) = 4x^2 - 8x^2$	x + 1 and $g(x) = 3$	2x + 1. Find g(f'	$(\mathbf{x}-1)$			
	(A) $16x - 31$	(B) $4x^2 - 16x + 16x +$	-13 (C) 8x —	7 (D) $8(x^2-2)$	(2x + 1) (E) $16(x - 1)$		
28.	Evaluate: \int_{-n}^{n} (2)	$3-2x^3) dx$					
	(A) n ⁴	(B) 6n	(C) $6n + n^4$	(D) $6n - n^4$	(E) n ⁴ —6n		
29.	• .	or the letter ''I'' w om without repla	hich is reserved f acement. If the pr	or Mr. Cleerly. Ty obability that both	wo of the student's letters n of the letters drawn are		
	(A) 10	(B) 11	(C) 13	(D) 14	(E) 15		
30.	30. The number 90 is considered to be a <i>polite number</i> . What is it's <i>politeness</i> ?						
	(A) 12	(B) 9	(C) 6	(D) 5	(E) 3		
31.	$111_2 + 222_4 + 33_5$	3 ₈ =	10				
	(A) 1,934	(B) 268	(C) 222	(D) 206	(E) 108		

(A) 4x + 5y = 1 (B) 3x + 2y = -1 (C) 3x - 4y = -7 (D) 2x + y = -3 (E) 5x - 6y = 11

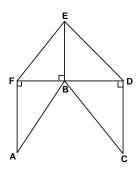
32. Which of the following lines is concurrent to the lines 2x + 3y = -1 and x - 2y = 3?

33. I. M. Cheep wants to buy four shirts for his Spring Break trip. There is a "No-Tax Discount" sale going on. Which of the following is the cheapest deal?

(A) \$13.90 each

(B) \$14.50 each and he has a 10% off coupon

(C) buy 3 at \$17.85 each and get 1 free (D) buy 2 at \$19.95 each and get 2 half off


(E) buy 3 at \$15.60 and get 25% off of the 4th one

34. The Real value solution set for |4 - 5x| + 6 > 10 is?

(A) $\{x \mid \{x < 0\} \cup \{x > 1.6\}\}\$ (B) $\{x \mid \{x < 0\} \cup \{x > 4\}\}\$ (C) $\{x \mid \{x > 0\} \cup \{x < -1.6\}\}\$

(D) $\{x \mid 0 < x < 4\}$ (E) $\{x \mid 0 < x < 1.6\}$

35. Given: $m\angle BFE = 45^{\circ}$, $m\angle BED = 60^{\circ}$, $m\angle CBD = 30^{\circ}$, $m\angle ABF = 60^{\circ}$, and BE = 4 cm. Find the perimeter of the hexagon shown. (nearest tenth).

(A) 55.5 cm

(B) 45.9 cm

(C) 42.2 cm

(D) 40.6 cm

(E) 38.4 cm

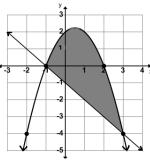
36. The roots of the equation $x^3 + kx^2 - 23x = 60$ are R, 5, and -3. Find k.

(A) 2

(B) 1

(C) -12 (D) -6

37. If $a_1 = -2$, $a_2 = 1$, $a_3 = -3$, and $a_n = a_{n-3}(a_{n-2} + a_{n-1})$, where $n \ge 4$, then a_7 equals:

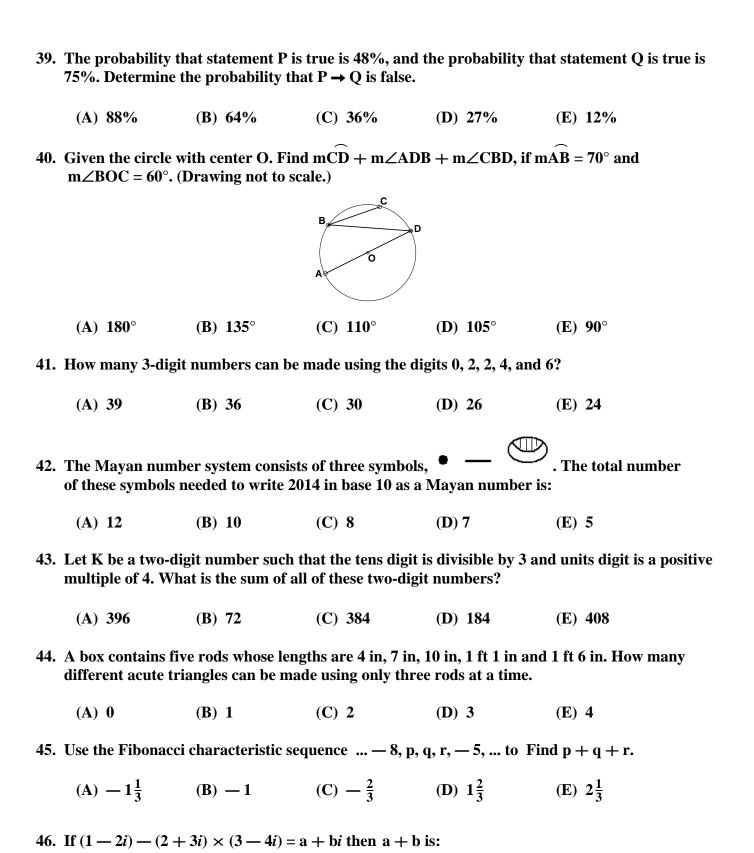

(A) - 15 (B) - 4

(C) 64

(D) 72

(E) - 56

38. Find the area of the shaded region in square units.



(A) 10

(B) $10\frac{1}{3}$ (C) $10\frac{2}{3}$

(D) 11

(E) $11\frac{1}{3}$

47. The eccentricity of the ellipse $16x^2 + 25y^2 = 400$ is: (nearest hundredth)

(A) $\frac{25}{3}$ (B) $\frac{9}{16}$ (C) $\frac{4}{5}$ (D) $\frac{3}{5}$ (E) $\frac{3}{4}$

(A) 14

(B) 4 (C) -34 (D) -22

(E) - 20

48. Find the slope of the line tangent to the curve $y = 7 - 6x - x^2$ at the point (-1, 12).

(A) $-4\frac{1}{3}$ (B) -4 (C) $-3\frac{1}{4}$ (D) $-\frac{1}{4}$ (E) $-\frac{1}{12}$

49. Willis A. Nutt bought 5 pounds of walnuts at \$4.50 per pound and 7 pounds of filberts at \$3.75 per pound. He mixed them together. The cost per pound of the mixture would be? (nearest cent)

(A) \$3.81

(B) \$3.94

(C) \$4.06

(D) \$4.13

(E) \$4.16

50. Points P, Q, and R lie on a circle with center C and chord PQ is the diameter. Point X is on chord PR. Find the perimeter of \triangle CPX if CX||QR, PQ = 13 cm and QR = 5 cm.

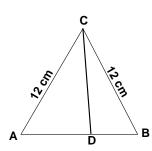
(A) 32.5 cm

(B) 30 cm

(C) 22.5 cm

(D) 16.25 cm

(E) 15 cm


51. Let $A = \begin{bmatrix} 2 & 1 & 3 \\ 1 & 1 & 2 \\ 1 & 3 & 6 \end{bmatrix}$. Find |A|.

(A) -4 (B) -6 (C) 3

(D) 2

(E) 1

52. \triangle ABC is an equilateral triangle. The ratio of AD to DB is 2 to 1. Find m \angle CDB. (nearest degree)

(A) 101° (B) 104°

(C) 108°

(D) 112°

(E) 120°

53. $(3 \text{cis}(\frac{\pi}{3}))^3$ equals:

(A) 9-9i (B) -6.25+4.5i (C) $3-i\sqrt{3}$ (D) 1-i (E) -27

54. Rusty Yaht sets sail from his personal dock at 8:00 am on a bearing of 65°. After sailing 5 km, he changes course and sails 10 km on a bearing of 120°. How far away from his personal dock is he at the end of the 15 km voyage? (nearest tenth)

(A) 11.6 km

(B) 12.5 km

(C) 13.2 km (D) 13.5 km (E) 14.4 km

55. Given the geometric sequence -4, a, b, $-\frac{27}{128}$, c, ..., find a+b+c.

(A) $-2\frac{181}{512}$ (B) $-2\frac{145}{1024}$ (C) $-4\frac{81}{256}$ (D) $-6\frac{35}{128}$ (E) $-6\frac{361}{1024}$

(A) 2	(B) 4	(C) 7	(D) 11	(E) no solution		
57. Which of the fol	lowing series are d	ivergent? 1. $\sum_{n=0}^{\infty}$	$\frac{2^{n}-1}{3^{n}}$ 2. $\sum_{n=0}^{\infty}$	$\cos{(n\pi)}$ 3. $\sum_{n=0}^{\infty} \frac{n!}{1000^n}$		
(A) 1 only	(B) 2 only	(C) 3 only	(D) 1 & 2	(E) 2 & 3		
58. A light bulb is hung 15 feet above a straight horizontal path. A man is walking away from the light at a rate of 5 feet per second. If the man is 6 feet tall, at what rate is the tip of the man's shadow moving? (nearest tenth)						
(A) 8.3 ft/sec	(B) 8.0 ft/sec	(C) 6.0 ft/sec	(D) 2.5 ft/sec	(E) 1.2 ft/sec		
•				sugar cookies, carrot cake ckage. How many different		

60. Change the base 10 proper fraction $\frac{5}{12}$ to a repeating decimal in base 11.

(C) 720

56. If $\log(x + 1) + \log(x + 2) = \log(2x + 22)$, solve for x.

packages can she make?

(B) 21

(A) 35

 $(A) \ \ 0.464646... \ \ _{11} \quad (B) \ \ 0.363636... \ \ _{11} \quad (C) \ \ 0.2181818... \ \ _{11} \quad (D) \ \ 0.636363... \ \ _{11} \quad (E) \ \ 0.8333... \ \ _{11}$

(D) 60

(E) 15

University Interscholastic League MATHEMATICS CONTEST HS • District 1 • 2014 Answer Key

1.	В	21. E	41. D
2.	E	22. B	42. C
3.	D	23. B	43. A
4.	C	24. C	44. A
5.	D	25. C	45. A
6.	E	26. E	46. E
7.	C	27. A	47. D
8.	В	28. B	48. B
9.	A	29. C	49. C
10.	C	30. D	50. E
11.	В	31. B	51. D
12.	E	32. E	52. A
13.	A	33. B	53. E
14.	C	34. A	54. D
15.	В	35. D	55. B
16.	D	36. A	56. B
17.	C	37. E	57. E
18.	D	38. C	58. A
19.	D	39. E	59. A
20.	В	40. C	60. A