

TMSCA HIGH SCHOOL MATHEMATICS TEST #11 © FEBRUARY 22,2014

GENERAL DIRECTIONS

1. About this test:

- A. You will be given 40 minutes to take this test.
- B. There are 60 problems on this test.
- 2. All answers must be written on the answer sheet/Scantron form/Chatsworth card provided. If you are using an answer sheet, be sure to use **BLOCK CAPITAL LETTERS**. Clean erasures are necessary for accurate grading.
- 3. If using a scantron answer form, be sure to correctly denote the number of problems not attempted.
- 4. You may write anywhere on the test itself. You must write only answers on the answer sheet.
- 5. You may use additional scratch paper provided by the contest director.
- 6. All problems have **ONE** and **ONLY ONE** correct [BEST] answer. There is a penalty for all incorrect answers.
- 7. Calculators used on this test must be conform to the UIL standards. Graphing calculators are allowed. Calculators need not be cleared.
- 8. All problems answered correctly are worth **SIX** points. **TWO** points will be deducted for all problems answered incorrectly. No points will be added or subtracted for problems not answered.
- 9. In case of ties, percent accuracy will be used as a tie breaker.

TMSCA TMSCA

2013 – 2014 TMSCA High School Mathematics Test 11									
1. Evaluate $\frac{11!}{8!} \bullet \frac{18}{9}$	$\frac{3!}{1} \div \frac{16!}{7!}$.								
A) 14960	B) <u>4</u>	$\frac{195}{2}$	C)	$\frac{8415}{2}$	D)	33660		E)	3740
2. The length of the	2. The length of the second leg of a right triangle is 1 cm more than the length of the first leg, and the								
hypotenuse is 11 A) 20 cm	cm less B) 2	than twice the le	ength C)	of the first leg. 24 cm	Find t	he perimete 120 cm	er of the	e tria E)	ngle. 70 cm
 Mrs. Jones is fift 	teen year	s older than twi	ce the	age of her son.	Twen	ty years ag	o, her a	ge w	as nine times
that of her son.	Find her	age.		5	D)		,	-	•
A) 75	B) 6:	5	C)	50	D)	25 Г		E)	20
4. Use the Venn dia (A)	agram to (C)	determine the s $(2, 4, 5, 0, 17)$	et A'	$\cup B$.	ı		U A	~~	B
(A) $\{\theta\}$ (B) $\{2 \ 4 \ 9\}$	(C) (D)	$\{2, 4, 5, 9, 17\}$	(L) {\$,?,0,2,4,9	}			$\frac{1}{2} \left(\theta \right)$	$\begin{pmatrix} 2 \\ 4 \\ 0 \end{pmatrix}_{17}$
[2, 1,)]		[0,2,1,3,9,17]							<u> </u>
5. Karolyn invested	l \$1000 f 1at was th	or 4 years in a v	ariab est for	le interest accou the 4 years?	unt. He	er annual in	terest ra	ates a	are shown in the
Y	ear	1		2	3		4		
Inte	erest	7% gain		4% loss	6% l	oss	6% gai	n	
(A) 0.58%	(B) 2	2.35%	(C)	1.35%	(D)	0.75%		(E)	2.19%
6. Find <i>a</i> if $(3x+5)$) is a fac	tor of $6x^3 + ax^2$	-542	x-a.					
A) -9	B) 6	3	C)	-49	D)	17		E)	-35
7. The points $P(7,$	12) and	Q(5,20) are on	\overleftarrow{PQ} .	The equation of	of the li	ne parallel	to \overrightarrow{PQ}	throu	igh the point
(-1,3) is:									
A) $4x + y + 1 = 0$	B) 4	x + y - 7 = 0	C)	4x - y + 5 = 0	D)	x-4y+5	=0	E)	4x + y - 40 = 0
8. $\sum_{k=1}^{7} (3k^2 + 2k - 1)$	=								
A) 441	B) 4	69	C)	357	D)	476		E)	385
9. Carrie has 10 sch	nool book	ks. In how man	y way	s can she arran	ge her	books on a	single s	helf	so that she
keeps her three r $(\Delta) = 241920$	(B) = 3	ks together?	\mathbf{C}	120060	D)	3628800		E)	40320
A) 241920	D) 5	2	C)	120900	D)	3028800		E)	40320
10. If $\frac{x^4 - 5x}{(x^2 + 4x + 4)}$	$\frac{x^2+4}{\left(x^2+2x-\right.}$	$\frac{x^2 + ax + 2}{x^2 + bx + 2}$	$\frac{2}{2}$, fin	$d \frac{a}{b}$.					
A) 0.5	B) -2	2	C)	1	D)	-0.5		E)	-1
11. A community th sold-out play bro	eater hol ought in S	ds 1200 patrons \$18853, how ma	. Chi any ac	ld and adult tick lult tickets were	kets co e sold?	st \$12.75 aı	nd \$17.5	50 re	spectively. If a
A) 452	B) 6	57	C)	748	D)	543		E)	572
12. The intersection A) Medians	of the B) Angl	of a triangle e bisectors	is the C) 1	center of the ci Midpoints E	rcumsc D) Pei	ribed circle pendicular	e. bisector	rs	E) Altitudes
13. Let $f(x) = x^3 + 3$	3x+1, an	$dg(x) = x^2.$ Fi	nd g	(f'(3)).					
A) 1369	B) 9	00	C)	225	D)	1225		E)	1521

Copyright © 2013 TMSCA

TMSCA 13-14 HSMA Test 11

14. The base of the prism is a regular hexagon. Which of the following is an expression for the volume of the prism?

Page 2

Copyright © 2013 TMSCA

TMSCA 13-14 HSMA	A Test 11 m Shop has ning flavor	a of ice aream and three	tupes of some How	Page 3			
cones can be orde	red?		types of colles. How I	many distinct 2-scoop			
A) 108	B) 165	C) 45	D) 55	E) 135			
27. $\sum_{n=1}^{10} [n(n+1)] =$							
A) 245	B) 110	C) 55	D) 440	E) 385			
28. How many distinctA) 20160	et arrangements can be B) 5040	made with the letters "C 4320	SUNSHINE"? D) 15120	E) 10080			
29. If $\int_0^a \sin x dx = C t$	then $\int_{-a}^{a} 3\sin x dx =$						
A) 0	B) 2 <i>C</i>	C) 3 <i>C</i>	D) 6 <i>C</i>	E) 12 <i>C</i>			
30. The point $(2, -7)$	is reflected over the x-a	axis, reflected over the	line $y = x$, rotated 270	° clockwise around			
the origin, then sh	nifted down three units t	to the point (a,b) . Fin	d $a+b$.				
A) 2	B) -12	C) -7	D) -5	E) -9			
31. Which of the follo	owing is not a solution t	to $f(x) \ge \left 25 - \sqrt{x^2} \right $?					
A) (-3,22)	B) (-8,18)	C) (9,14)	D) $(0, 30)$	E) (4,21)			
32. The seven trapezoA) Heronian	bidal means are construct B) Contraharmonic	cted as segments in a tr C) Geometric	capezoid. Which one is D) Harmonic E)	the shortest? Root-mean square			
33. What is the area of A) 8.37 in^2	of a triangle with side lead B) 44.00 in ²	ngths 8 inches, 11 inch C) 35.50 in ²	es, and 17 inches? (nea D) 26.00 in ²	rest hundredth) E) 39.75n ²			
34. At which of the fo	ollowing <i>x</i> -values is the	graph of $f(x) = x^4 - 1$	$2x^3 + 48x^2 - 64x$ conca	ave down?			
A) 3	B) 4	C) 2	D) 1	E) 5			
35. If $\sin\theta = -\frac{7}{25}$ and	and $\frac{\pi}{2} \le \theta \le \frac{3\pi}{2}$, then tar	$n \theta =$					
A) $-\frac{24}{25}$	B) $\frac{24}{7}$	C) $-\frac{24}{7}$	D) $\frac{24}{25}$	E) $\frac{7}{24}$			
36 Let $(a+4i)(b+i)$) = 17 - 31i where <i>a b</i>	$\in \mathbb{Z}$ find the value of	a+b	24			
A) 3 B)) 4 C) -'	7 D) 7	E) -10				
37. Find BD. (nearest	t quarter inch)	,	,	B A			
A) $9\frac{1}{2}$ B) 10	10 C) $10\frac{1}{4}$	D) $11\frac{3}{4}$	E) $11\frac{1}{2}$	13"			
38. Find the constant	term in the expansion c	of $\left(2x^2-\frac{3}{x}\right)^9$.		$A \xrightarrow{4" D 9"} C$			
A) 19683	B) -145152	C) 979776	D) 489888	E) -326592			
39. In town A, during a one week period, the probability that it is cloudy on any particular day is 0.35. If it is cloudy, the chance of rain is 0.72. What is the probability that it will rain at least once during the week?							
A) 0.131	B) 0.869	C) 0.999	D) 0.855	E) 0.900			

Copyright © 2013 TMSCA

TMSCA 13-14 HSMA Test 11

- 40. If a hiker travels 6 miles on a bearing of 12°, then another 5 miles on a bearing of 334°, what is the shortest distance back to his starting point?
- A) 10.00 mi B) 2.26 mi C) 10.06 mi D) 13.06 mi E) 10.41 mi

41. Let
$$a_1 = 3$$
, $a_2 = -2$, and $a_n = 2(a_{n-1})(-a_{n-2})$. Find a_5 .
A) 284 B) -576 C) -288 D) 1728 E) -1152

42. Express $\log(10\sqrt{ab})$ in terms of P and Q if $P = \log a$ and $Q = \log b$.

- A) 5PQ B) $10P + \frac{1}{2}Q$ C) $5P + \frac{1}{2}Q$ D) $\frac{PQ}{2}$ E) $\frac{1}{2}(P+Q) + 1$
- 43. A belt joins two pulleys. The larger pulley has a radius of 84 cm and revolves at a rate of 15 rpm. The smaller has a radius of 7 cm. How fast is the smaller pulley revolving?
 (A) 70 rpm
 (B) 90 rpm
 (C) 140 rpm
 (D) 180 rpm
 (E) 270 rpm

44. The line 3x + 2y = 39 forms a chord in circle $x^2 + y^2 + 4x - 6y - 156 = 0$. Find the length of the chord.

A) 13 B)
$$2\sqrt{39}$$
 C) $\sqrt{195}$ D) $4\sqrt{13}$ E) 12

45. An investment is made in a fund that pays an annual percentage rate of 6.5%, compounded monthly. How long (to the nearest tenth of a year) will it take for the investment to double?

A) 10.6 B) 10.7 C) 10.8 D) 10.9 E) 11.0

46. There are seven boys and five girls on the student council. Their sponsor is asked to select three boys and three girls to attend a community luncheon. How many different groups could the sponsor choose?

- A) 350 B) 45 C) 12600 D) 315 E) 6300
- 47. The sum of the first ten terms of an arithmetic sequence is 27.5 and the sum of the first twenty terms is 205. Find the common difference of the sequence.
- A) 2.5 B) 2.25 C) 1.25 D) 0.75 E) 1.5
- 48. If $\frac{x-6}{x+7} + \frac{x+7}{x-6} = A\frac{B}{C}$, then B =A) 52 B) 1 C) -13 D) 169 E) 26
- 49. What is the area of the largest isosceles triangle that can be inscribed in the circle with the equation $x^2 + y^2 + 6x + 10y 87 = 0$?
- A) $\frac{121\sqrt{3}}{16}$ B) $\frac{363\sqrt{3}}{16}$ C) $\frac{121\sqrt{3}}{4}$ D) $\frac{363}{4}$ E) $\frac{363\sqrt{3}}{4}$

50. Two players, X and Y, play a game in which X throws 6 coins and Y throws a fair 6-sided die. Player X wins if the number of heads is greater than the number on the die, otherwise Y wins. If Y throws a 3, what is the probability of Y winning?

A) $\frac{21}{32}$ B) $\frac{5}{12}$ C) $\frac{11}{32}$ D) $\frac{1}{2}$ E) $\frac{7}{12}$

51. Quadrilateral ABCD has vertices (-7,3), (-4,6), (2,1) and (9,-2) respectively. What is the area of ABCD?

A) 46 B) 30 C) 15 D) 27 E) 23
52. If
$$f(x) = ax^4 + bx^2 + x$$
 and $f(2) = 30$ then $f(-2) =$

Page 4

TMSCA 13-14 HSMA Test 11

Page 5 53. What is the 10⁻⁸ digit in the expansion of $1 + (x-2) + \frac{(x-2)^2}{2!} + \frac{(x-2)^3}{3!} + \frac{(x-2)^4}{4!} + \dots$ when x = 4? D) 0 A) 9 B) 2 E) 8 C) 3 54. The operation € is defined as $A \in B = A^3 + 2A + B^3$. Compute $3 \in (1 \in 2)$. B) 1764 D) 42876 A) 756 C) 1364 E) 36 55. How many solutions are there to 11x + 4y = 153 such that $x, y \in \mathbb{Z}^+$. B) 3 A) 8 C) 7 D) 6 E) 2 56. The probability that Joy will get a multiple choice question right is 0.25 by randomly guessing. If she guesses on every question on a 20 question quiz, what is the probability that she will make above a 30%? A) 0.786 B) 0.898 C) 0.190 D) 0.214 E) 0.101 57. If $y = x^{x^2}$, then $\frac{dy}{dx} =$ A) $x^2 \cdot x^{x^{2}-1}$ B) $(x+2x\ln x)x^{x^2}$ C) $x+2x\ln x$ D) $2x^{x^{-1}}$ E) $x^{2x}\ln x$ 58. If $\frac{43-2x}{x^2+9x-22} = \frac{A}{x-2} + \frac{B}{x+11}$, then A + B =C) -3 D) -2 A) -5 E) 5 59. Let P and Q be the roots of $3x^2 + 9x - 25$. Find $P^5 + 5P^4Q + 10P^3Q^2 + 10P^2Q^3 + 5PQ^4 + Q^5$. A) 54 B) -243 C) -1776 D) -32 E) -4096 60. On the circle with center F, EC = 7AE. The area of triangle ABC is 144 cm². B Find the area of the shaded region. С B) 54 cm^2 C) 90 cm^2 D) 84 cm^2 E) 108 cm^2 A) 72 cm^2

2013-2014 TMSCA Mathematics Test Eleven Answers

1. C	21. A	41. E
2. E	22. D	42. E
3. B	23. A	43. D
4. D	24. D	44. D
5. A	25. D	45. B
6. E	26. E	46. A
7. A	27. D	47. E
8. B	28. E	48. D
9. A	29. A	49. E
10. E	30. B	50. A
11. C	31. C	51. E
12. D	32. D	52. D
13. B	33. C	53. A
14. E	34. A	54. C
15. E	35. E	55. B
16. C	36. E	56. D
17. C	37. E	57. B
18. C	38. D	58. D
19. E	39. B	59. B
20. E	40. E	60. E

2013-2014 TMSCA Mathematics Test Eleven Answers

8. Using summation formulas the sum is
$$3\left(\frac{7(7+1)(2\cdot7+1)}{6}\right)+2\left(\frac{7(7+1)}{2}\right)-1(7)$$
 which equals 469.
15. $\frac{\cot^2 t}{\csc t} = \frac{\csc^2 t-1}{\csc t} = \csc t - \sin t$
16. The geometric mean divides the trapezoid into two similar trapezoids, so $\frac{29}{37} = \frac{FB}{55.5}$ and $FB = 44.4$.
17. Let A be the 10 digit in base 11.
0.2222..., $=\frac{2}{A_1} = \frac{1}{5_{11}}$
18. $8(10)(12)(14)(16) = 215040$
28. There are 8 letters with the S and the N each appearing five, so ket number of possible arrangements is $\frac{8!}{21\times 2!} = 10080$.
29. $f(x) = \sin x$ is an odd function, so $\int_{-\pi}^{\pi} 3\sin x dx = 0$.
32. The smallest of the trapezoid means is the harmonic.
37. $BD = \sqrt{13^2 - 4(9)} = 11.5$
38. The constant term of the binomial expansion is $\sqrt{c_1}(2x^2)^3(-\frac{3}{x})^2 = 489888$
39. The probability of ration on a single given day is 0.35(0.72) = 0.252, so the probability of at least one rainy day, do $1-(0.748)^3 = 0.869$.
44. Completing squares on the circle gives a center of $(2,-3)$ and thadius of 13.
The distance between the point $(2,-3)$ and the ling is 4.5 . The distance between the point $(2,-3)$ and the ling is 4.5 or the rain of the same 1.5 or the 10 digit in base 11.
0.2222..., $=\frac{2}{A_1} = \frac{1}{5_{11}}$ such that $\frac{11}{\sqrt{3}} = \frac{11}{\sqrt{3}}$ and $\frac{11}{\sqrt{3}} = \frac{11}{\sqrt{3}} = \frac{11}{\sqrt{3}}$ and $\frac{11}{\sqrt{3}} = \frac{11}{\sqrt{3}} = \frac{11}{\sqrt{3}}$.
The area will be $(11\sqrt{3})^2\sqrt{3} = \frac{363\sqrt{3}}{4}$
57. Use logarithmic differentiation. In $y = \ln x^2 = x^2 \ln x$ if $\frac{11}{x} = (x + \ln x - 2x) y = (x + 2x \ln x) x^4$ and $\frac{1}{\sqrt{3}} = (x + \ln x - 2x) y = (x + 2x \ln x) x^4$.
60. The beights of triangles ABC, EBF and EFD are each $\frac{3}{8}$ of the base of EBF and EFD are each $\frac{3}{8}$ of the base of EBF and EFD are each $\frac{3}{8}$ of the base of ABC , so shaded area $= 2\left(\frac{3}{8}\right) 144 = 108$.