

TMSCA HIGH SCHOOL MATHEMATICS

TEST# 12©

FEBRUARY 25, 2017

GENERAL DIRECTIONS

- 1. About this test:
- A. You will be given 40 minutes to take this test.
- B. There are 60 problems on this test.
- 2. All answers must be written on the answer sheet/Scantron form/Chatsworth card provided. If you are using an answer sheet, be sure to use **BLOCK CAPITAL LETTERS**. Clean erasures are necessary for accurate grading.
- 3. If using a scantron answer form, be sure to correctly denote the number of problems not attempted.
- 4. You may write anywhere on the test itself. You must write only answers on the answer sheet.
- 5. You may use additional scratch paper provided by the contest director.
- 6. All problems have **ONE** and **ONLY ONE** correct [BEST] answer. There is a penalty for all incorrect answers.
- 7. Calculators used on this test must be conform to the UIL standards. Graphing calculators are allowed. Calculators need not be cleared.
- 8. All problems answered correctly are worth **SIX** points. **TWO** points will be deducted for all problems answered incorrectly. No points will be added or subtracted for problems not answered.
- 9. In case of ties, percent accuracy will be used as a tie breaker.

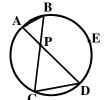
TMSCA TMSCA

1.	Evalu	ate: 0.58333	.÷0.7	5+1.125-0.83	33×	1.2.				
	(A)	$\frac{65}{72}$	(B)	$\frac{89}{72}$	(C)	$\frac{7}{5}$	(D)	$\frac{17}{72}$	(E)	$\frac{3}{4}$
2.	bag, 4 \$3.79,	Erin went to the grocery store to purchase supplies for a cake. She bought 3 bags of flour at \$3.29 per bag, 4 boxes of butter at \$3.99 each, 2 bags of powdered sugar for \$1.79 each, a gallon of milk for \$3.79, a flat of eggs for \$12.99 and a spatula for \$6.25. How much change did she receive if only the spatula was taxed at a rate of 8.25% and she paid with three twenty dollar bills?								
	(A)	\$7.04	(B)	\$3.23	(C)	\$8.46	(D)	\$11.06	(E)	\$7.83
3.	Points	s A and B have	e coor	dinates (3,–5)	and	(–9,19) respec	ctively	. What is the y	-coor	dinate of the y-
	interc	ept of the perp	pendic	cular bisector o	of the	segment \overline{AB} ?	•			
	(A)	7.5	(B)	-8.5	(C)	15	(D)	8.5	(E)	1
4.	52 ya	rds per second	is the	same speed as	S	miles p	er hou	r. (nearest mpl	h)	
	(A)	106	(B)	98	(C)	110	(D)	112	(E)	102
5.	If 17	$=3x-y,\;x-4$	4y = 1	3 and $x + ay =$	1, the	en $a = ?$				
	(A)	2	(B)	-2	(C)	-1	(D)	0	(E)	-3
6.	Whic	h of the follow	ing is	not a one-to-or	ne fun	ction?				
	(A)	$y = 7x^5$	(B)	$y = e^{2x}$	(C)	$\ln(x-5)$	(D)	$y = 5x^2 (E)$	all a	re one to one
7.	She a	veraged 72 mp	h exc	ept when she a	verag	ed 52 mph dri	ving tł	ance in 12 hour rough the San ro area? (neare	Anto	nio metro area.
	(A)	1 hr 24 min	(B)	2 hr 6 min	(C)	1 hr 50 min	(D)	1 hr 36 min	(E)	1 hr 20 min
8.	Simpl	lify: $\frac{1}{(n-2)!}$:	$-\frac{\left(n+1\right) }{\left(n+1\right) }$	(n+2)! 1)! $(n-1)!$.						
	(A)	$\frac{n^2-2n-3}{n-1}$		(B)	$\frac{n^2+n^2}{n^2}$	$\frac{-2n-3}{n+1}$		$(C) \frac{n^2 - n - n}{n+1}$	2	
	(D)	$\frac{1}{n^2-4}$		(E) $\frac{1}{n}$	$\frac{n-1}{n+2}$				
9.	Point	P(-5,2) lies of	on the	x-y plane. Poi	int P i	s reflected ove	r the l	ine $y = -x$ to $y = -x$	ooint	Q. Point O is

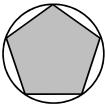
(D) 11

(E) -3

(C) 1


translated -6 units horizontally to point R. Point R is rotated 90° clockwise around the origin to

point S. The coordinates of point S is (x,y). Find x+y.


(B) 13

(A) -11

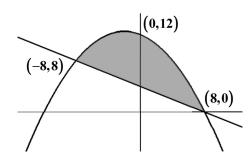
- 10. If $15x^2 7x 2 = (ax + b)(cx + d)$ then ab + cd = ?
 - (A) 29
- **(B)** 28
- (C) 35
- (\mathbf{D}) -2
- (E) -1
- 11. \overline{AB} , \overline{AC} , \overline{BD} and \overline{CD} are chords of the circle shown. Find \overline{mBED} if $\overline{m}\angle ADC = 54^{\circ}$ and $\overline{m}\angle APB = 41^{\circ}$.
 - (A) 170°
- (B) 171°
- (C) 190°
- (D) 168°
- (E) 182°

- 12. Which of the following are the side lengths of a scalene, obtuse triangle?
 - (A) 13, 17, 21
- (B) 9, 13,16
- (C) 9, 11, 14
- (D) 11, 15, 18
- (E) 11, 11, 15
- 13. The regular pentagon in the illustration is inscribed in the circle. If a dart thrown at random strikes inside the circle, what are the odds that it will land in the shaded region? (nearest hundredth)
 - (A) 0.76
- (B) 1.32
- (C) 4.78
- (D) 3.11
- (E) 1.21

- 14. A hexagonal dipyramid has 18 edges, and the number of vertices is 4 less than the number of faces. How many vertices does it have?
 - **A)** 6
- **(B)** 18
- (C) 16
- (\mathbf{D}) 8
- (E) 12

- 15. If $\frac{A}{x+5} + \frac{B}{2x+3} = \frac{9x-4}{2x^2+13x+15}$, then A+B=?
 - (A) -6
- **(B)** 2
- (C) -2
- (D) 9
- (E) -5

- 16. Let f(x) = 2x 1 and $g(x) = \sqrt[3]{-27x} 1$. Calculate f(g(8)).
 - (A) -17
- **(B)** 9
- (C) 15
- (D) -15
- (E) 13
- 17. Using the following array, determine the value of the last number in the 27th row.
 - 1 (row 1) 3 5 (row 2) 7 9 11 (row 3) 13 15 17 19 (row 4) 21 25 27 23 29 (row 5) (\dots)


- (A) 649
- **(B)** 755
- (C) 811
- (D) 869
- (E) 929
- 18. How many distinguishable arrangements can be made from the letters "AMARILLO"?
 - (A) 10,080
- **(B)** 40,320
- (C) 5040
- (D) 5,760
- (E) 6,720

- 19. If the pattern of the sequence 47250, 47248, 47244, 47238, 47230, 47220, ... continues, find the smallest positive term.
 - (A) 56
- **(B)** 1059
- (C) 1144
- (D) 378
- **(E)** 948
- 20. If an integral factor of 255, not including 1 or 255 is chosen at random, what are the odds that it is a multiple of 3?
 - (A) 1:2
- (B) 1:3
- (C) 2:1
- (D) 3:1
- **(E)** 1:1
- 21. Given that the binomial x+2 is a factor of $3x^4 Ax^3 + Ax^2 + 2x + 16$, calculate the value of A.
 - (A) -5
- (B) -3
- (C) 5
- (D) -17
- **(E)**

- 22. Let $f(x) = \frac{9x^3 5x}{x 3}$. Find f'(-1).
 - (A) $-\frac{21}{16}$
- (C) $\frac{9}{10}$

- 23. The bearing from town A to town B is 320°, and the bearing from town A to town C is 60°. If the distance from A to B is 5 km, and the distance from A to C is 3 km, how far town B from town C? (nearest tenth of a kilometer)
 - (A) 7.2 km
- (B) 4.7 km
- (C) 6.3 km
- (D) 7.9 km
- (E) 6.5 km
- 24. Find the sum of the solutions of $2\sin^2\theta \cos\theta = 1$, where $0 < \theta < 3\pi$.
- (C) 2π

- 25. Find volume of the solid generated when the shaded region bounded by the parabola and the line in the illustration is rotated 360° around the line y = 15. (nearest cubic unit)

- (A) 1,084
- (B) 4,182
- (C) 11,338
- (D) 690
- (E) 2,168
- 26. The point of intersection of all of the altitudes of a triangle is called the_____.
 - (A) center
- (B) incenter
- (C) centroid
- (D) circumcenter (E) orthocenter
- 27. If z = a + bi is a complex number such that $z^5 = 316 + 12i$ and $z^4 = 28 + 96i$, then a + b = ?
 - (A) 1
- (B) -2
- (C) 3
- (\mathbf{D}) -1
- (E) 2
- 28. Let $f_0 = 0$, $f_1 = 1$, $f_2 = 1$, $f_3 = 2$, $f_4 = 3$ be the terms of the Fibonacci sequence. Find f_{16} .
 - (A) 987
- **(B)** 1597
- (C) 377
- (D) 2584
- (E) 4181

29. Find
$$\lim_{x \to \infty} \frac{-4x^2 + 9x^2 + 7}{3x^3 - 9}$$

(4
(A)	
(11)	3

$$(D) \quad \frac{4}{3}$$

30. The number 567 in base 9 is equivalent to the number k in base 3. Find the sum of the digits in the number k.

$$(C)$$
 4

31. The function $f(x) = 2x^4 - 3x^2$ is decreasing over which of the following intervals?

$$(A) \quad \left(-\infty, 0\right]$$

(A)
$$\left(-\infty,0\right]$$
 (B) $\left[-\frac{\sqrt{3}}{2},\frac{\sqrt{3}}{2}\right]$ (C) $\left[0,\infty\right)$ (D) $\left[0,\frac{\sqrt{6}}{2}\right]$ (E) $\left[0,\frac{\sqrt{3}}{2}\right]$

(D)
$$\left[0, \frac{\sqrt{6}}{2}\right]$$

(E)
$$\left[0, \frac{\sqrt{3}}{2}\right]$$

32. If $a_0 = -1$, $a_1 = 3$, $a_2 = 5$ and $a_n = (a_{n-3})(a_{n-1}) + a_{n-2}$ for $n \ge 3$, then $a_6 = ?$

$$(A)$$
 -15

(D)
$$-20$$

$$(\mathbf{E})$$
 -7

33. Find the equation of the tangent to the curve defined by $9x^2 - y^2 = 56$ at the point (-3,5).

(A)
$$27x + 5y = -150$$

(B)
$$27x + 5y = -56$$

(B)
$$27x + 5y = -56$$
 (C) $5x - 27y = -120$

(D)
$$27x + 5y = -81$$

(E)
$$5x + 27y = 120$$

34. How many 3-digit numbers exist such that the sum of their digits equals 12?

35. A lightbulb company produces bulbs that are faulty on average 4.8% of the time. If 5 bulbs are packaged together, what is the probability that at least one of the bulbs is faulty? (nearest tenth)

36. There are two values of k for which $\det \begin{bmatrix} 6 & 2 & 3 \\ 4 & -k & 7 \\ k & 0 & 5 \end{bmatrix} = -60$. What is the smallest value of k?

(B)
$$\frac{10}{3}$$
 (C) 2 (D) $\frac{5}{2}$ (E) -3

$$(\mathbf{D}) \quad \frac{3}{2}$$

$$(E) \quad -3$$

37. The function $f(x) = \frac{6x^2 + 5x - 25}{9x^2 - 25}$ has a vertical asymptote at x = V and a horizontal asymptote at y = H. Find V + H

$$(A) \quad \frac{7}{3}$$

(C)
$$\frac{2}{3}$$

(B) 1 (C)
$$\frac{2}{3}$$
 (D) -1 (E) $-\frac{1}{6}$

38.A and B are the roots of $f(x) = 3x^2 - 8x + 4$. Calculate the value of $A^4 + 4A^3B + 6A^2B^2 + 4AB^3 + B^4$.

(A)
$$\frac{4096}{81}$$

(B)
$$\frac{256}{81}$$

$$(C) \quad \frac{16}{81}$$

(C)
$$\frac{16}{81}$$
 (D) $-\frac{4096}{81}$ (E) $-\frac{256}{81}$

(E)
$$-\frac{256}{81}$$

39. If both the sides of the square base of a rectangular prism are doubled in length, and the height of	f the
prism is tripled, what is the ratio of volume of the new prism to the volume of the original?	

- (A) 6:1
- (C) 3:1 (D) 2:1
- (E) 12:1

40.Simplify: $(a^{-3}) \left(\frac{(a^{-2})^4}{\sqrt[3]{a}} \right)^5$

- (A) $(\sqrt[3]{a})^{-98}$ (B) $(\sqrt[3]{a})^{-130}$ (C) $(\sqrt[3]{a})^{-100}$ (D) $(\sqrt[3]{a})^{-128}$ (E) $(\sqrt[3]{a})^{-110}$

41. How many integral values of n exist such that $n \ge -1$ and $\frac{(n+3)!}{(n+1)!} \le 432$

- (A) 19
- **(B)** 18
- (C) 22
- **(D)** 20
- **(E)** 21

42. $\left(-2-3\sqrt{-27}\right)\left(4\sqrt{-12}\right)$

- (A) $-216-16\sqrt{3}i$
- (B) $-72-16\sqrt{3}i$
- (C) $216-16\sqrt{3}i$

- (D) $72-16\sqrt{3}i$
- (E) $-216+16\sqrt{3}i$

- (A) 200,000
- (B) 1,000,000
- (C) 100,000
- (D) 2,000,000
- 2,222,220 **(E)**

44. Ten liters of 30% acid solution is obtained by mixing a 20% solution with a 50% solution. How much 50% solution is used in the final mixture?

- (A) $2\frac{1}{2}$ liters (B) 5 liters (C) $6\frac{2}{3}$ liters (D) $3\frac{1}{3}$ liters (E) $7\frac{1}{2}$ liters

45. $5^3 + 6^3 + ... + 21^3 =$

- (A) 53,262
- (B) 53,288
- (C) 53,297 (D) 53,331
- (E) 53,261

46. If $f(x) = \cos x$, then $\lim_{h \to 0} \frac{f(\pi + h) - f(\pi)}{h}$ is

- $(A) \quad 0$
- (B) -1
- (C) 1
- (D) $\sqrt{3}$
- **(E)** undefined

47. Sweet Tooth Candy Store has bins of cherry, grape, strawberry, orange and lime lollipops. How many distinct sets of 6 lollipops can they package?

- (A) 252
- **(B)** 126
- (C) 210
- (D) 125
- **(E)** 120

48. If $f(x) = 3^x$, $g(x) = \log_3 x$ and $a \ge 2$, then g(f(a+2)) = ?

- (A) a+2
- (B) 3^{a+2}
- (C) 3a+6
- (D) $\log_3(a+2)$ (E) 3a+2

49.	Which	of the	following	statements	about	\boldsymbol{f}	(x)) =	5x-1	1 + 7	?
47.	VV IIICII	or me	TOHOWING	statements	about	J	X) =	$ \Im x - 1 $	4 + /	

f'(x) exists for all x in the domain of f(x)I.

 $f^{-1}(x)$ is a function II.

 $\lim_{x\to a} f(x)$ exists for all a in the domain of f(x)III.

- (A) II only
- (B) I & II
- (C) III only
- (D) II & III (E) none of these

50. The rolls of a biased 6-sided dice have the probability distribution shown. What is the expected value of a single roll?

Roll	1	2	3	4	5	6
Probability	1/3	1/12	1/48	5/48	5/24	X

- (A) 1
- (B) $\frac{145}{48}$ (C) $\frac{25}{8}$ (D) $\frac{51}{16}$

51. The lengths of the sides of triangle PQR are the roots of $f(x) = 2x^3 - 29x^2 + 134x - 198$. The perimeter of triangle PQR is 14.5. Find the area of triangle PQR. (nearest tenth)

- (A) 6.2
- **(B) 6.4**
- (C) 7.3
- (D) 9.1
- (E) 7.8

52. Find the area of a convex quadrilateral with vertices at (-1,9), (3,11), (7,2) and (2,-5).

- (A) 71.5
- **(B)** 69.5
- (C) 56.5
- (D) 67.5
- **(E) 73**

53. Change the base 10 proper fraction $\frac{4}{15}$ to a repeating decimal in base 6.

- (A) 0.2444...
- (B) 0.151515...
- (C) 0.1434343... (D) 0.5333...
- (E) 0.1333...

54. If $\sin \alpha = -\frac{1}{2}$, where $\pi < \alpha < \frac{3\pi}{2}$ and $\cos \beta = \frac{\sqrt{3}}{2}$, where $\frac{3\pi}{2} < \beta < 2\pi$, then $\tan(\beta - \alpha) = ?$

- (A) $\sqrt{3}$ (B) $-\frac{\sqrt{3}}{3}$

- (C) -1 (D) $\frac{\sqrt{3}}{3}$ (E) $-\sqrt{3}$

55. If $x + \frac{1}{x} = 17$ then $x^3 + \frac{1}{x^3} = ?$

- (A) 4862
- **(B)** 4845
- (C) 4896
- 4879 **(D)**
- **(E)** 4913

56. If $h(x) \le f(x) \le g(x)$ for all x in an open interval containing c, except possibly at c itself, and if $\lim_{x\to c} h(x) = L = \lim_{x\to c} g(x)$ then $\lim_{x\to c} f(x)$ exists and is equal to L. This theorem is known as:

- (A) Rolle's Theorem
- (B) Sandwich Theorem
 - (C) Fundamental Theorem of Calculus

- (D) Intermediate Value Theorem (E) Fundamental Theorem of Algebra

- 57. Find the shortest distance between the x-intercept of the line 2x + 7y = 14 to the line 5x 6y = -48. (nearest tenth)
 - (A) 4.6
- **(B)** 10.6
- (C) 7.7
- **(D)** 4.5
- (E) 8.1
- 58. Find the sum of the lengths of all the diagonals of a regular pentagon if the length of each side is 5 ft. (nearest tenth of a foot)
 - (A) 40.5 ft
- (B) 43.3 ft
- (C) 20.2 ft
- (D) 21.7 ft
- (E) 35.4 ft

- 59. $\det\begin{bmatrix} \sin A & \cos A \\ -\sin A & \cos A \end{bmatrix} =$
 - (A) $\cos 2A$
- (B) $\cos^2 A \sin^2 A$ (C) 0
- **(E)** 1
- 60. Which of the following statements about $f(x) = \begin{cases} 15 & \text{if } x \leq 3 \\ 2x^2 x & \text{if } x > 3 \end{cases}$ is/are true?
 - I. f(x) is defined at 3 II. $\lim_{x\to 3} f(x)$ exists
 - III. f(x) is continuous at 3 IV. f(x) is differentiable at 3
 - (A) I, II & IV (B) I, II & III (C) I & II

- (D) I only (E) none of these

Test Twelve Answer Key

1. A	21. A	41. D
2. A	22. E	42. C
3. D	23. C	43. E
4. A	24. E	44. D
5. A	25. B	45. E
6. D	26. E	46. A
7. A	27. B	47. C
8. E	28. A	48. A
9. B	29. C	49. C
10. E	30. D	50. E
11. A	31. E	51. D
12. B	32. B	52. D
13. D	33. B	53. E
14. D	34. B	54. E
15. B	35. B	55. A
16. D	36. C	56. B
17. B	37. D	57. B
18. A	38. A	58. A
19. D	39. E	59. D
20. E	40. B	60. B

Test Twelve Select Solutions

4.
$$\frac{52 \ yd}{s} \cdot \frac{3600 \ s}{hr} \cdot \frac{1mi}{1760 \ yd} \approx 106 \frac{mi}{hr}$$

11.
$$\widehat{mAB} + \widehat{mCD} = 2(41^\circ) = 82^\circ$$
 and $\widehat{mAC} = 108^\circ$, so $\widehat{mBED} = 360 - 108 - 82 = 130^\circ$.

13. Let the radius of the circle be 1, then the area of circle is π and the area of the pentagon is $5\left(\frac{1}{2}\right)\sin 72^{\circ} \approx 2.38$ and the odds of landing in the shaded region are $\frac{2.38}{\pi} \approx 3.11$.

15. Let
$$A(2x+3)+B(x+5)=9x-4$$
 to set up the system of equations: $2A+B=9$ and $3A+5B=-4$ for $A=7$, $B=-5$ and $A+B=2$

16. The last numbers on each row form a quadratic sequence. Use quadratic regression, then find the 27th term.

18. The "A" and "L" both repeat once, so the total number of arrangements is $\frac{8!}{2 \cdot 2} = 10,080$.

21.
$$f(-2) = 0 = 48 + 8A + 4A - 4 + 16$$
 for $A = 5$.

25. $y_1 = -\frac{1}{2}x + 4$ and $y_2 = -\frac{1}{8}x^2 - \frac{1}{2}x + 12$. The volume of the solid of revolution will be:

$$\int_{-8}^{8} \pi (15 - y_1)^2 dx - \int_{-8}^{8} \pi (15 - y_2)^2 dx \approx 4182$$

27.
$$\frac{316+12i}{28+96i} = 1-3i$$
 for $a+b=-2$

33. $18x - 2y \frac{dy}{dx} = 0$ for $\frac{dy}{dx} = -\frac{27}{5}$ at (-3,5). Use the slope and point to find the equation of the tangent line.

35. Use p(at least one fault) = 1-p(no fault) or
$$1-(1-0.048)^5 \approx 0.218$$
 or 21.8%.

38. The pattern with A and B is the sum of the roots to the fourth power, so $\left(\frac{8}{3}\right)^4 = \frac{4096}{81}$.

44. Solve
$$10(0.3) = 0.5x + 0.2(10 - x)$$
 for $x = 3\frac{1}{3}$.

45.
$$\left(\frac{21(22)}{2}\right)^2 - 1 - 8 - 27 - 64 = 53261$$

46. This is the definition of the derivative of $f(x) = \cos x$ at $x = \pi$ or 0.

47.
$$_{6+5-1}C_6 = 210$$
.

50. Find x by
$$1 - \left(\frac{1}{3} + \frac{1}{12} + \frac{1}{48} + \frac{5}{48} + \frac{5}{24}\right) = \frac{1}{4}$$
, then the expected value is $\frac{1}{3} + \frac{2}{12} + \frac{3}{48} + \frac{20}{48} + \frac{25}{24} + \frac{6}{4}$.

51. The area of the triangle is $\sqrt{7.25 f\left(7.25\right)} \approx 9.1$.

57. The x-intercept is (7,0) and the distance from this point

to
$$5x - 6y + 48 = 0$$
 is $\frac{|7(5) + 0(-6) + 48|}{\sqrt{25 + 36}} \approx 10.6$