


# TMSCA HIGH SCHOOL MATHEMATICS TEST # 2 © OCTOBER 27, 2012

### **GENERAL DIRECTIONS**

#### 1. About this test:

- A. You will be given 40 minutes to take this test.
- B. There are 60 problems on this test.
- 2. All answers must be written on the answer sheet/Scantron form/Chatsworth card provided. If you are using an answer sheet, be sure to use **BLOCK CAPITAL LETTERS**. Clean erasures are necessary for accurate grading.
- 3. If using a scantron answer form, be sure to correctly denote the number of problems not attempted.
- 4. You may write anywhere on the test itself. You must write only answers on the answer sheet.
- 5. You may use additional scratch paper provided by the contest director.
- 6. All problems have **ONE** and **ONLY ONE** correct [BEST] answer. There is a penalty for all incorrect answers.
- 7. Calculators used on this test must be conform to the UIL standards. Graphing calculators are allowed. Calculators need not be cleared.
- 8. All problems answered correctly are worth **SIX** points. **TWO** points will be deducted for all problems answered incorrectly. No points will be added or subtracted for problems not answered.
- 9. In case of ties, percent accuracy will be used as a tie breaker.

TMSCA 2012-2013 TMSCA High School Mathematics Test 2

| 1.                                                                                                                                    | What is $\frac{5}{12} \div 0.444$                                                                                                                                                                                                              |                                                                                              |                                                    |                        |                        |  |
|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------|------------------------|--|
|                                                                                                                                       | (A) $\frac{1}{32}$                                                                                                                                                                                                                             | (B) $1\frac{1}{8}$                                                                           | (C) $\frac{161}{432}$                              | (D) $\frac{43}{216}$   | (E) $1\frac{5}{16}$    |  |
| 2.                                                                                                                                    | Given $P(-2,3)$ and $Q(4,-5)$ find an equation of a line parallel to $\overline{PQ}$ through $(-7,-8)$ ?                                                                                                                                       |                                                                                              |                                                    |                        |                        |  |
|                                                                                                                                       | (A) $3x + 4y + 53 = 0$                                                                                                                                                                                                                         | (B) $4x + 3y + 52 = 0$                                                                       | (C) $3x + 4y + 29 = 0$                             | (D) $4x + 3y - 36 = 0$ | (E) $4x + 3y - 1 = 0$  |  |
| 3.                                                                                                                                    | The three(A) sides                                                                                                                                                                                                                             | (B) medians                                                                                  | le intersect at the incer<br>(C) $\perp$ bisectors | nter.<br>(D) altitudes | (E) angle bisectors    |  |
| 4.                                                                                                                                    | 65 mph. An hour lat                                                                                                                                                                                                                            | rom Corpus Christi. A<br>er, Frank left Corpus (<br>iving distances when t<br>(B) 16.6 miles | Christi and drove towa                             |                        | -                      |  |
| 5                                                                                                                                     | <b>`</b>                                                                                                                                                                                                                                       | e decreases by 15% an                                                                        |                                                    |                        |                        |  |
| 0.                                                                                                                                    | area of the triangle?<br>(A) 3%                                                                                                                                                                                                                | -                                                                                            | (C) 2%                                             | (D) -3%                | (E) 1%                 |  |
| 6.                                                                                                                                    | The polynomial $f(x)$                                                                                                                                                                                                                          | $x) = x^3 + 3x^2 + ax + b$ le                                                                | aves the same remaind                              | ler when divided by (. | (x-2) as when          |  |
|                                                                                                                                       | divided by $(x+1)$ .                                                                                                                                                                                                                           |                                                                                              |                                                    | - (                    | ,                      |  |
|                                                                                                                                       | (A) $\frac{1}{32}$                                                                                                                                                                                                                             | (B) -6                                                                                       | (C) 0                                              | (D) $\frac{43}{216}$   | (E) $1\frac{5}{16}$    |  |
| 7.                                                                                                                                    | For what value of $k$ of                                                                                                                                                                                                                       | does det $\begin{bmatrix} 3 & 2 & -1 \\ k & -2 & 4 \\ -k & 5 & -3 \end{bmatrix}$             | =-47?                                              |                        |                        |  |
|                                                                                                                                       | (A) -5                                                                                                                                                                                                                                         | (B) -89                                                                                      | (C) 5                                              | (D) 1                  | (E) 17.8               |  |
| 8.                                                                                                                                    | 8. What is the area under enclosed by the parabola and x-axis from A to B.<br>(A) $\frac{29}{24}$ (B) $\frac{63}{8}$ (C) $\frac{425}{24}$ (D) $\frac{256}{3}$ (E) $\frac{243}{8}$ (C) $\frac{425}{24}$ (D) $\frac{256}{3}$ (E) $\frac{243}{8}$ |                                                                                              |                                                    |                        |                        |  |
|                                                                                                                                       | (A) $\frac{29}{24}$ (B)                                                                                                                                                                                                                        | $\frac{03}{8}$ (C) $\frac{423}{24}$                                                          | (D) $\frac{230}{3}$                                | (E) $\frac{243}{8}$    | •(-3, -5)              |  |
| 9.                                                                                                                                    | Erin is arranging her 10 school books on a shelf. If she keeps her 3 history books together, in how many                                                                                                                                       |                                                                                              |                                                    |                        |                        |  |
|                                                                                                                                       | possible ways can sh<br>(A) 40320                                                                                                                                                                                                              | e arrange the books?<br>(B) 120                                                              | (C) 30240                                          | (D) 120960             | (E) 241920             |  |
| 10. A map has a scale of 1 inch = 75 miles. Corpus Christi and Dallas are 415 miles apart. How many inches apart are they on the map? |                                                                                                                                                                                                                                                |                                                                                              |                                                    |                        |                        |  |
|                                                                                                                                       | (A) $\frac{83}{16}$ in                                                                                                                                                                                                                         | (B) $\frac{11}{2}$ in                                                                        | (C) $\frac{16}{3}$ in                              | (D) $\frac{83}{15}$ in | (E) $\frac{67}{15}$ in |  |
| 11                                                                                                                                    | 11. The aces and black kings are removed from a well-shuffled deck of cards. If 2 cards are drawn at random without replacement, what is the probability that both are hearts?                                                                 |                                                                                              |                                                    |                        |                        |  |
|                                                                                                                                       | 33                                                                                                                                                                                                                                             |                                                                                              | y that both are hearts? $11$                       | (D) 22                 | ( <b>D</b> ) 1         |  |

(A)  $\frac{33}{529}$  (B)  $\frac{8}{115}$  (C)  $\frac{11}{221}$  (D)  $\frac{22}{345}$  (E)  $\frac{1}{17}$ 

Page 2 of 6

(E) 3.08°

12. If 
$$h(x) = x+3$$
,  $g(x) = x^2$ , and  $f(x) = 2x$ , then  $f(g(h(-4))) =$   
(A) 2 (B) 128 (C) 67 (D) -61 (E) -2

13. A belt joins two pulleys. The larger pulley has a radius of 24 cm and revolves at a rate of 15 rpm. The smaller has a radius of 9 cm. How fast is the smaller pulley revolving?

(A) 40 rpm  
(B) 
$$\frac{72}{5}$$
 rpm  
(C)  $\frac{320}{3}$  rpm  
(D)  $\frac{8}{3}$  rpm  
(E)  $\frac{64}{9}$  rpm  
14.  $\tan\left(\frac{\pi}{6}\right)\cos\left(\frac{\pi}{6}\right)\div\cot\left(\frac{5\pi}{3}\right)\csc\left(\frac{\pi}{6}\right)\div\cos\left(\frac{5\pi}{3}\right)\csc\left(\frac{5\pi}{3}\right)=$   
(A)  $\frac{4}{3}$   
(B) 2  
(C)  $\frac{2\sqrt{3}}{3}$   
(D) 4  
(E)  $\frac{1}{2}$ 

15. What is the acute angle between the vectors 3i + 7j and -2i - 4j?(A) 86.63°(B)  $3.37^{\circ}$ (C)  $2.62^{\circ}$ (D)  $87.38^{\circ}$ 

16. If 
$$f(x) = \frac{x^2 + 5}{2x}$$
, then  $f'(3) =$   
(A) 3  
(B)  $-\frac{11}{9}$  (C)  $\frac{2}{9}$  (D)  $\frac{11}{9}$  (E)  $-\frac{2}{9}$ 

17. Kyle is playing a game with two fair dice. If the sum of the dice is a multiple of three, he earns two points. If the sum is seven, he loses five points. Otherwise, he scores nothing. What is his expected score for a single roll?

(A) 
$$\frac{1}{6}$$
 (B)  $\frac{3}{11}$  (C)  $-\frac{1}{6}$  (D)  $-3$  (E)  $-\frac{1}{2}$ 

 $18. \ 3+10+21+36+...+300+351+406 = (A) \ 10920 \qquad (B) \ 1120 \qquad (C) \ 11130 \qquad (D) \ 6544 \qquad (E) \ 2135$ 

- 19. Kaye bought eight chairs at a garage sale for \$8.00 each. She sold three to her neighbor with a 120% mark-<br/>up, sold two to her sister for a 25% profit, and gave three away to her daughter. What was her total profit?<br/>(A) -\$15.20 (B) \$8.80 (C) \$23.20 (D) -\$16.00 (E) \$24.80
- 20. Six circles are tangent to each other and an equilateral triangle is inscribed around them as shown. What percent of the area of the triangle is shaded? (A) 78.13% (B) 68.02% (C) 60% (D) 40.31% (E) 80.61%

21. Two chords,  $\overline{AC}$  and  $\overline{BD}$  intersect inside circle *P* at point *E*. Given BE = 6, DE = 24, and  $\overline{BD}$  bisects  $\overline{AC}$ , find the length of  $\overline{AC}$ . (A) 16 (B) 30 (C) 24 (D) 9 (E) 18

## 22. $\left[1 - (2\sin 2\theta \cos 2\theta)^2\right] \sec^2 4\theta =$ (A) $\sin^2 4\theta$ (B) $\cos^2 4\theta$ (C) $\sec 4\theta$ (D) $\sec^2 4\theta$ (E) $\tan 4\theta \cot 4\theta$

23. What is the constant term in the binomial expansion of  $(5x^3 - \frac{2}{x})^8$ ? (A) 28 (B) 44800 (C) -280 (D) -56000 (E) -256

(E) 2744

24. What is the slope of the tangent to  $x^2 + y^2 = 36$  at the point  $(5, \sqrt{11})$ .

(A) 
$$\frac{5\sqrt{11}}{11}$$
 (B)  $\sqrt{11}$  (C)  $-\frac{5\sqrt{11}}{11}$  (D)  $\frac{23\sqrt{11}}{11}$  (E)  $\frac{13\sqrt{11}}{11}$ 

- 25. The ratio of length to width of a rectangle is 13:3 and the perimeter is 768 in. What is the area of the rectangle?
  (A) 156 ft<sup>2</sup>
  (B) 22464 ft<sup>2</sup>
  (C) 1872 ft<sup>2</sup>
  (D) 208 ft<sup>2</sup>
  (E) 3 ft<sup>2</sup>
- 26. Which of the following is a triangular number? (A) 842 (B) 841 (C) 961 (D) 1036 (E) 861

27. The ratio of sides of triangle is 2:4:5. What is the measure of the smallest angle to the nearest hundredth of a degree?
(A) 23.58°
(B) 22.33°
(C) 71.03°
(D) 71.79°
(E) 49.46°

(A) 
$$23.58^{\circ}$$
 (B)  $22.33^{\circ}$  (C)  $71.03^{\circ}$  (D)  $7$ 

28. The graph of f(x) is shown right. f(x) =

(A) 2

- (A)  $-4\cos\left(\frac{\pi}{2}x\right)$  (B)  $2\sin(2\pi x) + 2$  (C)  $-2\cos\left(\frac{\pi}{2}x\right) + 2$  (D)  $-2\cos(2\pi x) + 2$  (E)  $2\sin\left(\frac{\pi}{2}x\right) + 2$
- 29.  $3^3 + 4^3 + 5^3 + ... + 12^3 + 13^3 + 14^3 =$ (A) 11017 (B) 289570 (C) 11016 (D) 11025
- 30. Which of the following is not a solution to  $|2x+3| \ge 7x-5$ ?
  - (B)  $-\frac{7}{3}$  (C)  $-\frac{8}{3}$  (D)  $\frac{8}{5}$  (E) 0

31. What is the area of the circle with the equation  $x^2 + y^2 - 4x + 6y + 6.75 = 0$ ?

(A)  $\frac{25\pi}{4}$  (B)  $\frac{5\pi}{2}$  (C)  $\frac{25\pi}{2}$  (D)  $9\pi$  (E)  $4\pi$ 

32. Meredith set out to row on a lake. She rowed 500 m on a bearing of 75°, then 200 m on a bearing of 25°, then 350 m on a bearing of 52°. How far is she from her original starting point?
(A) 1050 m
(B) 615 m
(C) 775 m
(D) 526 m
(E) 994 m

33.  $(-3+2\sqrt{-6})(7-12\sqrt{-27}) = a+bi$ . Find the value of *a*. (A)  $108\sqrt{3}+14\sqrt{6}$  (B)  $-21+216\sqrt{2}$  (C)  $51\sqrt{2}$  (D)  $-21-216\sqrt{2}$  (E)  $108\sqrt{3}-14\sqrt{6}$ 

34. Which of the following is the *x*-coordinate of a point of inflection on  $f(x) = x^4 + 2x^3 - 12x^2 - 36x - 23$ ? (A) 1 (B) -1.5 (C) 2.45 (D) -1 (E) 3.8

35. Jonah has 250 m of fencing. He wants to build a rectangular enclosure with one central division and one side bounded by a river as shown. What is the maximum possible area for the enclosure? (A) 7813 m<sup>2</sup> (B) 3906 m<sup>2</sup> (C) 2604 m<sup>2</sup> (D) 2500 m<sup>2</sup> (E) 5208 m<sup>2</sup> [[]]

- 36. The points P(3,9), Q(-3,5) and R(7, y) are collinear. Find the value of y.
  - (A)  $\frac{19}{3}$  (B)  $\frac{35}{3}$  (C) 15 (D)  $\frac{5}{3}$  (E) 3
- 37. A pizza shop has 8 choices of toppings and two types of crust. They run a fall special offering a large, 3-topping pizza for \$12.00. How many possible pizza orders are there if a topping can be repeated?
  (A) 165
  (B) 240
  (C) 112
  (D) 120
  (E) 330

Copyright © 2012 by TMSCA

| 38. If $\log 9 = P$ , and $\log (A) \frac{PQ}{2}$                                                                                                                                                                                                                      | 5 = Q, then<br>(B) $2PQ$ | 1 log 0.6 = |                         | $\left(\frac{\sqrt{P}}{Q}\right)$ | (D) $\frac{P-2}{2}$     | 2 <u>Q</u>   | (E) $\frac{\sqrt{P}}{Q}$  |             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------|-------------------------|-----------------------------------|-------------------------|--------------|---------------------------|-------------|
| 39. What is the length of<br>(A) 12 (B)<br>40. If $\frac{x-1}{x^2-4} - \frac{x}{x^2-x-2}$                                                                                                                                                                              | 3) 2√6                   | (C)         | $4\sqrt{6}$             | (D) 6√2                           | 2 (                     | (E) 6√6      | 45°                       | 30°         |
| (A) 3                                                                                                                                                                                                                                                                  | (B) 1                    |             | (C) -3                  |                                   | (D) -1                  |              | (E) -2                    |             |
| 41. Mr. Smith has six A-students, nine B-students, five C-students and three D-students in his geometry class.<br>The counselor needs eight students, two from each grade category to take a career assessment test. How<br>many possible groups could Mr. Smith send? |                          |             |                         |                                   |                         |              |                           |             |
| (A) 490314                                                                                                                                                                                                                                                             | (B) 16200                |             | (C) 64                  | 5                                 | (D) 2592                |              | (E) 128                   | a ainala ta |
| 42. A circle is inscribed in the nearest tenth of a $(A) 2.0 \text{ cm}^2$                                                                                                                                                                                             | square cen               | timeter?    | C                       |                                   |                         |              |                           |             |
| <ul> <li>43. The scores of a test given to students are normally distributed with a mean of 21. 80% of the students have scores less than 23.7. Find the standard deviation of the scores.</li> <li>(A) 3.38 (B) 3.21 (C) 0.30 (D) 2.70 (E) -3.38</li> </ul>           |                          |             |                         |                                   |                         |              |                           |             |
| <ul> <li>44. The probability of obtaining heads on a biased coin is 0.18. The coin is tossed seven times. What is the probability of obtaining at least two heads?</li> <li>(A) 0.632 (B) 0.304 (C) 0.696 (D) 0.368 (E) 0.063</li> </ul>                               |                          |             |                         |                                   |                         |              |                           |             |
| 45. Farmer Brown has chickens and pigs in his barnyard. There are a total of 25 heads and 66 feet. How many chickens are in the yard?                                                                                                                                  |                          |             |                         |                                   |                         |              |                           |             |
| (A) 8                                                                                                                                                                                                                                                                  |                          |             | (C) 17                  |                                   | (D) 16                  |              | (E) 9                     |             |
| 46. The base of a triangle altitude is                                                                                                                                                                                                                                 | e is 3 cm lo             | nger than   | the altitude            | e. The area                       | of the trian            | gle is 35 cn | n <sup>2</sup> . The leng | gth of the  |
| (A) 10 cm                                                                                                                                                                                                                                                              | (B) 4.6 cn               | ı           | (C) 7 cm                | 1                                 | (D) 7.6 c               | m            | (E) 8.2 cm                | n           |
| 47. The second term of a difference of the sequence (A) -8                                                                                                                                                                                                             |                          | c sequenc   | ce is 7, and t<br>(C) 5 | the sum of t                      | the first 4 te<br>(D) 3 | rms is 12.   | What is the (E) -5        | common      |
| 48. Three bakers can ice ten cakes in two hours. If they work at the same rate, how many cakes can four bakers ice in six hours?                                                                                                                                       |                          |             |                         |                                   |                         |              |                           |             |
| (A) 40                                                                                                                                                                                                                                                                 | (B) 30                   |             | (C) 36                  |                                   | (D) 24                  |              | (E) 42                    |             |
| 49. The nightly number of hours of sleep of 21 students are shown in the frequency table below. Find the interquartile range.                                                                                                                                          |                          |             |                         |                                   |                         |              |                           |             |
| Hours of Sleep                                                                                                                                                                                                                                                         |                          | 4           | 5                       | 6                                 | 7                       | 8            | 10                        | 12          |
| Number of Stud                                                                                                                                                                                                                                                         | lents                    | 2           | 5                       | 4                                 | 3                       | 4            | 2                         | 1           |
| (A) 5                                                                                                                                                                                                                                                                  | (B) 8                    |             | (C) 6                   |                                   | (D) 3                   |              | (E) 7                     | _           |

| 50. When $x = \frac{\pi}{3}$ , the slope of $y = k \sin x + 3x$ is 8. Find the value of k.                                                                                                                                                                                  |                                                          |                                                          |                                                         |                                                 |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------|--|--|
| (A) -10                                                                                                                                                                                                                                                                     | (B) $-5\sqrt{3}$                                         |                                                          | (D) $\frac{10\sqrt{3}}{3}$                              | (E) $-\frac{10\sqrt{3}}{3}$                     |  |  |
| 51. <i>ABCD</i> is a rectangle and <i>O</i> is the midpoint of $\overline{AB}$ . Express the vector $\overrightarrow{OA}$ in terms of the vectors $\overrightarrow{OC}$ and $\overrightarrow{OD}$ .                                                                         |                                                          |                                                          |                                                         |                                                 |  |  |
| (A) $\overrightarrow{OD} - \overrightarrow{OC}$                                                                                                                                                                                                                             | (B)<br>$0.5\overrightarrow{OD} + 0.5\overrightarrow{OC}$ | (C)<br>$0.5\overrightarrow{OD} - 0.5\overrightarrow{OC}$ | $(D) 0.5 \overrightarrow{OC} - 0.5 \overrightarrow{OD}$ | (E) $\overrightarrow{OD} + \overrightarrow{OC}$ |  |  |
|                                                                                                                                                                                                                                                                             |                                                          |                                                          |                                                         |                                                 |  |  |
| 52. Find the units digit of (A) 3                                                                                                                                                                                                                                           | (B) 1                                                    | (C) 7                                                    | (D) 0                                                   | (E) 9                                           |  |  |
| 53. Two fair 8-sided dic<br>(A) 7:64                                                                                                                                                                                                                                        | e are rolled. What are<br>(B) 5:31                       | the odds that the dice (C) 7:57                          | will have a sum of 8?<br>(D) 5:36                       | (E) 1:7                                         |  |  |
| 54. Simplify to the nearest ten-thousandth place: $1 + (1.3) + \frac{(1.3)^2}{2!} + \frac{(1.3)^3}{3!} + \frac{(1.3)^4}{4!} + \dots$                                                                                                                                        |                                                          |                                                          |                                                         |                                                 |  |  |
| (A) 3.6693                                                                                                                                                                                                                                                                  | (B) 0.2624                                               | (C) 0.2675                                               | (D) 3.6302                                              | (E) 0.9636                                      |  |  |
| 55. What is the area of a                                                                                                                                                                                                                                                   | regular hexagon in te                                    | rms of the length, a, of                                 | f the apothem?                                          |                                                 |  |  |
|                                                                                                                                                                                                                                                                             | (B) $2a^2\sqrt{3}$                                       | -                                                        | (D) $6a^2$                                              | (E) $\frac{2a^2\sqrt{3}}{3}$                    |  |  |
| 56. The matrix $A = \begin{pmatrix} 2 & 7 \\ 4 & k \end{pmatrix}$ has no inverse. Find the value of k.                                                                                                                                                                      |                                                          |                                                          |                                                         |                                                 |  |  |
| (A) -7                                                                                                                                                                                                                                                                      | (B) -14                                                  | (C) -2                                                   | (D) 14                                                  | (E) 7                                           |  |  |
| 57. The operation € is de<br>(A) 756                                                                                                                                                                                                                                        | efined as $A \in B = A^3 + B$<br>(B) 27                  | 3 <sup>3</sup> . Compute 3€(1€2).<br>(C) 1008            | (D) 42876                                               | (E) 36                                          |  |  |
| 58. How many solutions are there to $5x+6y=216$ such that $x, y \in \mathbb{Z}^+$ .                                                                                                                                                                                         |                                                          |                                                          |                                                         |                                                 |  |  |
| (A) 8                                                                                                                                                                                                                                                                       | (B) 43                                                   | (C) 7                                                    | (D) 36                                                  | (E) 20                                          |  |  |
| 59. Barry has a chord that is 2 yd. 9 in. long. He cuts it into four pieces in a ratio of 2:3:5:8. What is the sum of the lengths of the shortest and longest pieces?                                                                                                       |                                                          |                                                          |                                                         |                                                 |  |  |
| (A) 1 yd                                                                                                                                                                                                                                                                    | (B) 1 ft 8 in                                            | (C) 1 yd 1 ft 4 in                                       | (D) 2 ft 6 in                                           | (E) 1 yd 9 in                                   |  |  |
| <ul> <li>60. A pigeon in a tree looks down at a worm on the ground that is 15 m from the base of the tree with an angle of depression of 42°. How high is the pigeon off the ground?</li> <li>(A) 16 (6m = (D) 12 51 m = (C) 18 00 m = (D) 24 27 m = (D) 11 15 m</li> </ul> |                                                          |                                                          |                                                         |                                                 |  |  |

(A) 16.66m (B) 13.51 m (C) 18.00 m (D) 34.37 m (E) 11.15 m

### 2012-2013 TMSCA High School Mathematics Test 2 Key

| 1. B  | 21. C | 41. B |
|-------|-------|-------|
| 2. B  | 22. E | 42. D |
| 3. E  | 23. B | 43. B |
| 4. A  | 24. C | 44. D |
| 5. C  | 25. A | 45. C |
| 6. B  | 26. E | 46. C |
| 7. D  | 27. В | 47. A |
| 8. E  | 28. C | 48. A |
| 9. E  | 29. C | 49. D |
| 10. D | 30. D | 50. C |
| 11. D | 31. A | 51. C |
| 12. A | 32. E | 52. B |
| 13. A | 33. B | 53. C |
| 14. D | 34. D | 54. A |
| 15. B | 35. C | 55. B |
| 16. C | 36. B | 56. D |
| 17. C | 37. В | 57. A |
| 18. E | 38. D | 58. A |
| 19. B | 39. C | 59. E |
| 20. A | 40. C | 60. B |

2012 – 2013 TMSCA Solutions Mathematics Test Two

1. 
$$\frac{5}{12} \div \frac{4}{9} + \frac{3}{16} = \frac{5}{12} \cdot \frac{9}{4} + \frac{3}{16} = 1\frac{1}{8}$$
  
2.  $m = -\frac{8}{6} = -\frac{4}{3}$ ,  $y + 8 = -\frac{4}{3}(x + 7)$   
3. definition of angle bisector  
4.  $65t + 60(t - 1) = 415$ ,  $t = 3.8$   
 $65(3.8) - 60(2.8) = 79$  miles  
5.  $(0.85)(1.20) = 1.02$ ,  $2\%$  change  
6.  $f(2) = 2a + b + 20$ ,  $f(-1) = -a + b + 2$   
 $2a + b + 20 = -a + b + 2$ ,  $a = 6$   
7.  $3(6 - 20) - 2(-3k + 4k) - 1(5k - 2k) = -47$   
solve.  $k = 1$   
8. quad reg:  $f(x) = -2x^2 - x + 10$   
 $zeros: x = -2.5, 2$ ,  $\int_{-25}^{2} f(x) dx = \frac{243}{8}$   
9.  $8! 3! = 241920$   
10.  $\frac{1}{75} = \frac{d}{415}$ ,  $d = \frac{83}{15}$   
12.  $h(-4) = -1$ ,  $g(-1) = 1$ ,  $f(1) = 2$   
13.  $24 \cdot 15 = 9\theta$ ,  $\theta = 40$  revolutions  
14. let  $x = \frac{\pi}{6}$ , and  $y = \frac{5\pi}{3}$   
 $\frac{\sin x}{\cos x} \frac{1}{\sqrt{58} \cdot 20}$ ,  $\theta \approx 176.634$   
 $180 - \theta \approx 3.37^{\circ}$   
16.  $f'(3) = \frac{(2 \cdot 3)(2 \cdot 3) - (3^2 + 5) \cdot 2}{(2 \cdot 3)^2} = \frac{2}{9}$   
17.  $\frac{1}{3}(2) + \frac{1}{6}(-5) + \frac{1}{2}(0) = -\frac{1}{6}$   
18.  $\sum_{k=1}^{14} (2k^2)$   
18.  $\sum_{k=1}^{14} (2k^2)$   
19.  $24(2.2)$   
20.  $\frac{62}{(4 + 2\sqrt{4})^4}$   
21.  $AE = E$   
22.  $[1 - \sin^2 x]$   
19.  $24(2.2)$   
20.  $\frac{62}{(4 + 2\sqrt{4})^4}$   
23.  $\binom{8}{2}(5x)$   
24.  $\frac{dy}{dx} = -22x^2$   
26. (861) de  
27.  $\frac{(4^2 + 5^2)^2}{(2 \cdot 4)^2}$   
28. cosine, a vertical r  
of x is  $\frac{\pi}{2}$   
29.  $\sum_{k=3}^{14} (k^k)^{\frac{1}{2}}$   
30.  $\frac{2}{9} \le \frac{8}{5} \le \frac{2}{5}$   
21.  $x^2 - 4x$   
 $(x - 2)^{\frac{2}{2}}$   
31.  $x^2 - 4x$   
 $(x - 2)^{\frac{2}{2}}$   
32.  $500\cos 75 + 500\sin 75 + 30^{-2}$   
33.  $\frac{\pi}{2} = \frac{2}{5}$   
34.  $\frac{\pi}{2} - \frac{2}{5}$   
35.  $\frac{\pi}{2} - \frac{2}{5}$   
36.  $\frac{\pi}{2} - \frac{2}{5}$   
37.  $\frac{\pi}{2} - \frac{2}{5}$   
38.  $\frac{\pi}{2} - \frac{\pi}{2}$   
39.  $\frac{\pi}{2} - \frac{\pi}{2}$   
30.  $\frac{2}{9} \le \frac{8}{5} \le \frac{2}{5}$   
31.  $x^2 - 4x$   
 $(x - 2)^{\frac{2}{2}}$   
32.  $\frac{500\cos 75 + 5}{500\sin 75 + 5}$   
33.  $\frac{\pi}{2} - \frac{\pi}{2}$   
34.  $\frac{\pi}{2} - \frac{\pi}{2}$   
35.  $\frac{\pi}{2} - \frac{\pi}{2}$   
36.  $\frac{\pi}{2} - \frac{\pi}{2}$   
37.  $\frac{\pi}{2} - \frac{\pi}{2}$   
38.  $\frac{\pi}{2} - \frac{\pi}{2}$   
39.  $\frac{\pi}{2} - \frac{\pi}{2}$   
30.  $\frac{\pi}{2} = \frac{\pi}{2}$   
31.  $\frac{\pi}{2} - 4x$   
 $\frac{\pi}{2} - \frac{\pi}{2} - \frac{\pi}{2}$   
32.  $\frac{\pi}{2} - \frac{\pi}{2}$   
33.  $\frac{\pi}{2} - \frac{\pi}{2}$   
34.  $\frac{\pi}{2} - \frac{\pi}{2} - \frac{\pi}{2}$   
35.  $\frac{\pi}{2} - \frac{\pi}{2}$ 

$$\begin{aligned} \frac{44}{6}(29)(15) + \frac{1}{2}(14)(15) = 2135 \\ \frac{44}{6}(29)(15) + \frac{1}{2}(14)(15) = 2135 \\ 2) + 16(1.25) - 8(8) = 8.8 \\ \frac{6\pi}{(\sqrt{53})^3\sqrt{53}} = .7813 = 78.13\% \\ \frac{43}{\sqrt{53}} \frac{1}{\sqrt{53}} = .7813 = 78.13\% \\ \frac{6\pi}{\sqrt{53}} \frac{1}{\sqrt{53}} = .7813 = 78.13\% \\ \frac{6\pi}{\sqrt{53}} \frac{1}{\sqrt{53}} = .7813 = 78.13\% \\ \frac{7}{\sqrt{5}} \frac{1}{\sqrt{5}} \frac{1}{\sqrt{5}} = .7813 = 78.13\% \\ \frac{7}{\sqrt{5}} \frac{1}{\sqrt{5}} \frac{1}{\sqrt$$

45. 
$$p+c=25$$
,  $4p+2c=66$ ,  $p=8$ ,  $c=17$   
46.  $35=0.5(a)(a+3)$ ,  $a^2+3a-70=0$   
 $(a+10)(a-7)=0, a=7$   
47.  $a+d=7$ ,  $4a+6d=12$ ,  $d=-8$   
48.  $3r(2)=10$ ,  $4r(6)=4(10)=40$   
49. statistics function on calculator  
50.  $y'=k\cos x+3$ ,  $8=k\cos\frac{\pi}{3}+3$   
 $5=0.5k$ ,  $k=10$   
51.  $\overrightarrow{OA}=0.5\overrightarrow{OD}-0.5\overrightarrow{OC}$   
52.  $2012 \mod 4=0$ , rem = 1  
53. 64 possible rolls, 7 of them are 8's, 7:57  
54.  $e^{1.3} \approx 3.6693$   
55.  $A=6\left(\frac{a^2\sqrt{3}}{3}\right)=2a^2\sqrt{3}$   
56. det  $A=2k-28=0$ ,  $k=14$   
57.  $1€2=1^3+2^3=9$ ,  $3€9=3^3+9^3=756$   
58.  $y=\frac{(216-5x)}{6}$  use table. 7 solutions.  
59.  $\frac{81in}{2+3+5+8}=4.5in$ ,  $4.5(2+8)=45$  in  
45 in = 1 yd 9 in  
60.  $\tan 42^\circ = \frac{d}{15}$ ,  $d \approx 13.51$  m