

TMSCA HIGH SCHOOL MATHEMATICS

TEST# 2 ©
OCTOBER 29, 2016

GENERAL DIRECTIONS

- 1. About this test:
- A. You will be given 40 minutes to take this test.
- B. There are 60 problems on this test.
- 2. All answers must be written on the answer sheet/Scantron form/Chatsworth card provided. If you are using an answer sheet, be sure to use **BLOCK CAPITAL LETTERS**. Clean erasures are necessary for accurate grading.
- 3. If using a scantron answer form, be sure to correctly denote the number of problems not attempted.
- 4. You may write anywhere on the test itself. You must write only answers on the answer sheet.
- 5. You may use additional scratch paper provided by the contest director.
- 6. All problems have **ONE** and **ONLY ONE** correct [BEST] answer. There is a penalty for all incorrect answers.
- 7. Calculators used on this test must be conform to the UIL standards. Graphing calculators are allowed. Calculators need not be cleared.
- 8. All problems answered correctly are worth **SIX** points. **TWO** points will be deducted for all problems answered incorrectly. No points will be added or subtracted for problems not answered.
- 9. In case of ties, percent accuracy will be used as a tie breaker.

TMSCA TMSCA

- 1. Evaluate: $(22+7)\times 5\div 4+7\div (16-14)$.
 - (A) 4.95
- (B) 37.25
- (C) 39.75
- (D) 25.1
- **(E)** 26.7
- 2. Mitch bought a set of 4 tires for his car. He got the first one for regular price, the second one for a 15% discount, the third for $\frac{1}{5}$ off, and 30% off the fourth one. What was his total cost if the regular price of a single tire was \$108, and the tax rate on his purchase was 8.25%?
 - (A) \$379.96
- **(B)** \$392.55
- (C) \$380.84
- (D) \$386.25
- **(E)** \$391.65
- 3. 3000 revolutions per hour = _____ degrees per second.
 - (A) 360
- **(B)** 18000
- (C) 300
- (D) 3600
- (E) 320
- 4. The coordinates of points A and B are integers. Which of the following is an equation of the perpendicular bisector of AB?

- (A) 8x 6y = -5
- **(B)** 8x + 6y = 5
- (C) 4x + 3y = 15

- (D) 3x-4y=-1
- (E) 3x 4y = 5
- 5. If $m \angle A + m \angle B + m \angle C = 180^{\circ}$ and $m \angle C + m \angle D = 180^{\circ}$, then $m \angle A + m \angle B + m \angle C = m \angle C + m \angle D$ is an example of _property.

 - (A) Distributive (B) Commutative (C) Associative
- (D) Transitive
- **(E)** Closure
- 6. Bob walked to school to pick up his bicycle at an average rate of 5 mph. He rode his bike home at an average rate of 15 mph. The total trip took 40 min. How far does Bob live from the school?
 - (A) 1.5 mi
- (B) 2.4 mi
- (C) 1.8 mi
- (D) 2.5 mi
- (E) 2.6 mi

7. Use the table of values to create a function to find K.

X	1	2	3	4	•••	16	•••
Y	-3	3	13	27	•••	K	•••

- (A) 445
- **(B)** 573
- (C) 507
- **(D)** 445
- (E) 387

- 8. Solve for x in terms of y: $\frac{3y}{7} \frac{4}{3x} = \frac{y}{6}$
 - (A) $\frac{56}{11y}$ (B) $\frac{14}{3y}$ (C) $\frac{56}{15y}$ (D) $\frac{14}{15y}$ (E) $\frac{14}{3x}$

- 9. If p and q are the zeros of the function $f(x) = 21x^2 29x 10$ then $pq^2 + p^2q =$
- (A) $-\frac{290}{441}$ (B) $\frac{290}{441}$ (C) $-\frac{145}{441}$ (D) $\frac{145}{441}$
- **(E)**

- - (A) 353142
- (B) 332155
- (C) 347230
- (D) 353150
- (E) 325140
- 11. Find the total surface of the regular hexagonal prism shown. (nearest square inch)
 - (A) 800 in^2
- (B) 540 in^2 (C) 1060 in^2 (D) 520 in^2 (E) 790 in^2

- 12. Multiply (2x-7)(x-2)(2x+3).
- (A) $4x^3 16x^2 5x + 42$ (B) $4x^3 + 28x^2 5x + 42$ (C) $4x^3 16x^2 61x + 42$
- (D) $4x^3 28x^2 5x + 42$ (E) $4x^3 16x^2 5x 42$
- 13. The graph of the function $f(x) = x^4 12x^3 + 48x^2 64x$ has points of inflection when x = a and x = b. Find a + b.
 - (A) 8
- **(B)** 18
- (C) 6
- (\mathbf{D}) 9
- (E) 24
- 14. The regular hexagon ABCDEF is inscribed in a circle with the vertices arranged clockwise alphabetically on the circle. What is $m\angle EAD$?
 - (A) 30°
- (B) 36°
- (C) 45°
- (D) 54 $^{\circ}$
- (E) 60°
- 15. Carrie's 30-sided dice has sixty edges. How many vertices does it have?
 - (A) 24
- **(B)** 36
- (C) 28
- (D) 30
- (E) 32
- 16. A carpenter cut a flat, narrow board into four pieces. The lengths of the pieces were 12", 9", 8" and 6". How many triangles could the carpenter make using only three pieces at a time?
 - (A) 1

- (E) 5
- 17. If $\frac{x-2}{x+2} \frac{3x}{x+5} = \frac{ax^2 + bx + c}{px^2 + ax + r}$, then (a+b+c) (p+q+r) equals:
 - (A) -21
- (B) -33
- (C) 1
- (D) -31
- (E) -19
- 18. Train A leaves New York at 8 am travelling at an average speed of 56 mph towards Chicago. Fortyfive minutes later, Train B leaves Chicago travelling at an average speed of 59 mph towards New York. At what time will the trains pass each other on the 1100 mile trip? (nearest minute)
 - (A) 5:34 pm
- (B) 5:57 pm
- (C) 5:09 pm
- (D) 5:18 pm
- (E) 5:29 pm

19. If $f_0 = -2$, $f_1 = 3$, $f_2 = 1$, $f_3 = 4$, $f_4 = 5$,... $f_k = 7375$,... are terms of a Fibonacci-type sequence. Find f_{k+1} .

- (A) 11993
- **(B)** 19308
- (C) 15621
- (D) 15621
- **(E)** 11933

20. Find the sum of the arithmetic mean, median, mode and range of 3, 19, 5, 2, 10, 35, & 3.

- (A) 49
- **(B)** 48
- (C) 55
- (D) 53
- (E) 52

21. The number of integers between 1 and 54 that are relatively prime to 54 is:

- (A) 15
- **(B)** 20
- (C) 18
- **(D)** 17
- (E) 24

22. Simplify: $(a) \left(\frac{\left(a^3\right)^3 \left(\sqrt{a}\right)}{a^{-2}} \right)$

- (A) $(\sqrt{a})^{17}$ (B) $(\sqrt{a})^{21}$ (C) $(\sqrt{a})^{12}$ (D) $(\sqrt{a})^{13}$ (E) $(\sqrt{a})^{25}$

23.Mr. Smith has 13 students in his science club. He wants to select a 6-member team for district competition. How many distinct teams could he choose?

- (A) 1235520
- **(B)** 279936
- (C) 618618
- (D) 6468
- **(E)** 1716

24. Solve $\sin 2x = -\sin x$, where $0 \le x < 2\pi$.

- (A) $\left\{ \frac{\pi}{2}, \frac{2\pi}{3}, \frac{3\pi}{2}, \frac{4\pi}{3} \right\}$ (B) $\left\{ \frac{\pi}{2}, \frac{7\pi}{6}, \frac{3\pi}{2}, \frac{11\pi}{6} \right\}$ (C) $\left\{ 0, \frac{2\pi}{3}, \pi, \frac{4\pi}{3} \right\}$
- (D) $\left\{0, \frac{7\pi}{6}, \pi, \frac{11\pi}{6}\right\}$ (E) $\left\{\frac{2\pi}{3}, \frac{4\pi}{3}\right\}$

25. Which of the following is a formula for the area of an equilateral triangle in terms of its height?

- (A) $\frac{h^2}{3}$ (B) $\frac{2h\sqrt{3}}{3}$ (C) $\frac{h^2\sqrt{3}}{4}$ (D) $\frac{h\sqrt{3}}{2}$ (E) $\frac{h^2\sqrt{3}}{3}$

 $26. \frac{d}{d\theta} \cos(2\theta^2) = ?$

- (A) $-8\theta \sin(\theta^2)$ (B) $4\theta \sin(2\theta^2)$ (C) $8\theta \sin(\theta^2)$ (D) $-4\theta \sin(2\theta^2)$ (E) $-\sin(4\theta)$

27. Find the average rate of change for $f(x) = 3x^3 - 2x^2 + 5$ on the interval [-2,3].

- (A) 1

- (B) $\frac{121}{12}$ (C) 19 (D) $\frac{4837}{60}$ (E) $\frac{97}{5}$

28. $753_8 = k_4$. Find the sum of the digits in k.

- (A) 11
- **(B)** 9
- (C) 8
- (D) 10
- (E) 7

29. How many distinguishable arrangements can be made from the letters "SWEETWATER"?

- (A) 302400
- **(B)** 907200
- (C) 5040
- (D) 120960
- (E) 151200

30. Allen, Barney and Chris can build a brick wall together in 12 hours.	If each individual works at the
same rate, how long would it take Chris to build a wall twice as long	and twice as high by himself?

- (A) **72 hours**
- (B) 108 hours (C) 144 hours
 - (D) 108 hours
- **(E)** 56 hours

31. Given that the set of even numbers continue in the triangular pattern shown below, find the median of the terms in the 18th row.

- (A) 614
- **(B)** 546
- (C) 686
- (D) 136
- (E) 144

32. Given $a_0 = 2$, $a_1 = 3$ and $a_{n+1} = a_{n-1} + 2(a_n)$ for $n \ge 1$. Find a_6 .

- **(B)** 268
- (C) 458
- **(D)** 647
- (E) 239

33. Let $A = \begin{bmatrix} 1 & 3 \\ -1 & -2 \end{bmatrix}$ and $B = \begin{bmatrix} -2 & -3 \\ 2 & 4 \end{bmatrix}$. Find $|(A+B)^T|$.

- (A) 1
- (B) -1
- (C) 2
- (\mathbf{D}) -2
- $(\mathbf{E}) \quad \mathbf{0}$

34. Find $\lim_{x\to 3} \frac{x^2+4x-21}{x^2-7x+12}$.

- (A) -10
- (\mathbf{B}) -2
- (C) 5
- **(D)** 7
- (E) does not exist

35. If x - y = 3 and xy = 7 then $x^3 - y^3 = ?$

- (A) 48
- **(B)** 90
- (C) 69
- (D) 63
- (\mathbf{E}) 6

36. Find C if the remainder of $2x^3 - 7x^2 + 5x + C$ divided by x - 3 is 16.

- (A) 148
- **(B)** 90
- (C) 69
- (D) 10
- (E) 6

37. The chords \overline{AD} and \overline{BC} intersect inside circle O at point P. $\overline{AD} = 23$, $\overline{AP} = 6$ and $\overline{BP} = 3$. Find CB.

- (A) 19
- **(B)** 34
- (C) 37
- **(D)** 51
- (E) 54

38. The graph of $9x^2 - y^2 - 36x - 6y + 18 = 0$ is a

- (A) Circle
- (B) Parabola (C) Cartoid
- (D) Ellipse
- (E) Hyperbola

39. What is the constant term in the binomial expansion of $\left(\frac{2}{r^2} + x^4\right)^9$?

- (A) 672
- **(B)** 5376
- (C) 512
- **(D)** 64
- **(E)** 168

40.	Tw	o roo	ts of $f(x)$:	$=x^3+a$	$bx^2 + cx + d$	are	e 2+	i and i	5. Fin	d b+	c+d.		
		(A)	3	(B)	1 ((C)	-9		(D)	-1	(E)	2	
41.	The	e gra	ph of the pa	ramet	ric equation	is x	= 30	cos <i>t</i> an	d <i>y</i> =	6sin <i>t</i>	is a(n)		_•
		(A)	Ellipse	(B)	Circle ((C)	Par	rabola	(D)	Line	(E)	Hyper	bola
42.	Let	f(x)	$(x) = 3x^2 - 2x$	x + 4 a	$\operatorname{nd} g(x) = 3$	3 <i>x</i> +	·1. l	Find g	(f'(x))	-2))			
		(A)	18x - 41		(I						(C) 9:	$x^2 - 42x$	+61
		(D)	18x - 5		(I	E)	$9x^2$	-6x + 1	12				
43.	The	e rep	eating decin	nal 2.2	42424 ₆ ca	n b	e wr	itten as	which	of th	e following	g fractio	ns in base 6?
		(A)	$\frac{222}{30_{6}}$	(B)	$\frac{222}{35}_{6}$	((C)	$\frac{222}{55}_{6}$		(D)	$\frac{220}{35}_{6}$	(E)	$\frac{220}{30_{6}}$
44.	Wh	ich o	f the follow	ing are	sides of an	isos	scele	s, obtus	se tria	ngle?			
		(A)	11, 11, 15	(B)	48, 55, 73	((C)	14,14	$\sqrt{2},14$	(D)	19, 11, 17	(E)	8, 14, 8
45.			PQR is suc			°, P	R = 3	32 and	PQ =	28. 1	There are t	wo poss	ible values for QR.
		(A)	240	(B)	32	((C)	1808		(D)	55	(E)	896
46.	det	$\begin{pmatrix} \cos \\ \cos \end{pmatrix}$	$\begin{pmatrix} A & \sin A \\ B & \sin B \end{pmatrix} =$	= ?									
		(A)	$\sin(A+B)$	(B)	$\cos(A+B)$	3) ((C)	$\cos(A$	-B)	(D)	$\sin(B-A)$	(E)	$\cos(B-A)$
47.	and	l roll					-	_		_	_		ir divisions once comes were there in
		(A)	24	(B)	12	((C)	10		(D)	32	(E)	18
48.	Let	a,b	and c be re	eal nun	nbers such	that	c =	a+b+	$8, c^2 =$	$=a^2+$	b^2 and ab	= 8. Fi	nd the value of $6c$.
		(A)	30	(B)	-30	((C)	30		(D)	-24	(E)	18
49.	The	e real	value solut	ion for	$2x^2 - 11x$	+12	≥0	is?					
		(A)	$\Big\{x\Big \Big\{x\leq 1.$.5} U {:	$x \ge 4$ $\Big\}$	3)	$\{x \{$	$x \leq -1$.	5}∪{.	$x \ge 4$	(C) {	$x 1.5 \le 3$	$x \leq 4$
		(D)	$\{x \mid -1.5 \le$	$x \le 4$	(I	E)	$\{x x$	$c \ge 4$					
50.	Let	f(x)	$\left(x\right) = \frac{4x^2 - 3x}{2x + 1}$	$\frac{x+8}{1}$ a	nd s(x) bo	e the	e slaı	nt asym	ptote	of f	x). Find	s(4).	

(A) 5.5 (B) 3.1 (C) 10.5 (D) 7.5 (E) 4.5

51. Which of the following functions yields the graph shown?

- (A) $y = 3\sin(\pi(x-2))$
- (B) $y = 3\cos(\pi(x-2))$
- (C) $6\sin(x-2)$

- (D) $3\sin(\pi x-2)$
- (E) $y = 6\cos(\pi(x-2))$

52. The lengths of the sides of triangle PQR are the roots of $f(x) = x^3 - 19x^2 + 117x - 231$. Find the area of the triangle POR. (nearest tenth square unit)

- (A) 11.2
- **(B) 6.4**
- (C) 14.8
- (D) 25.2
- (E) 5.7

53. Solve $e^{2x} - 10e^x + 21 = 0$.

- (A) 0, $\log 21$
- (B) $\log 3, \log 7$ (C) $\ln 3, \ln 7$
- (D) $0, \ln 21$
- (E) 3.7

54. Let $f(x) = ax^7 - bx^3 - cx + 8$. If f(3) = 15 then f(-3) = ?

- (B) -15
- (C) 8
- **(D)** 1
- (E) 7

55. How many solutions are there for 3x + 5y = 1138 where x and y are both positive integers?

- **(B)** 77
- (C) 76
- (D) 75
- **(E)** 70

56. $\tan \theta < 0$ and $\sin \theta > 0$. Where will θ terminate?

- (A) QI
- (B) QII
- (C) QIII
- (D) QIV
- (E) y-axis

57. The geometric mean of 2017 and 7102 is ______% of the arithmetic mean of 2017 and 7102.

- (A) 35
- **(B)** 83
- (C) 120
- (D) 118
- (E) 68

58. Find the value of A+B+C, where A, B and C are non-negative integers and $\frac{40}{9} = A + \left| \frac{1}{B+1} \right|$.

- (A) 10
- **(B)** 11
- (C) 9
- 15 **(D)**
- (E) 17

59. All the edges of a cube are expanding at a rate of 4.25 centimeters per second. The volume of the cube is changing at a rate of _____cm³s⁻¹ when the length of one edge is 10 cm.

- (A) 541.875
- **(B)** 4250
- (C) 1275
- (D) 114.75
- (E) 767.656

60. The function f is such that $\int_{-0}^{1} f(x) dx = 48$. What is the value of $\int_{-0}^{1} (-3f(x) + 9) dx$.

- (A) -135
- (B) 54
- (C) -54 (D) -12
- (E) -153

Test Two Answer Key

1. C	21. D	41. A
2. E	22. E	42. A
3. C	23. E	43. C
4. B	24. C	44. E
5. D	25. E	45. A
6. D	26. D	46. D
7. C	27. C	47. A
8. A	28. A	48. E
9. A	29. E	49. A
10. D	30. C	50. A
11. C	31. A	51. B
12. A	32. B	52. C
13. C	33. D	53. C
14. A	34. A	54. D
15. E	35. B	55. C
16. D	36. D	56. B
17. B	37. C	57. B
18. B	38. E	58. C
19. E	39. B	59. C
20. E	40. C	60. C

Test Two Select Solutions

9. $pq^2 + p^2q = pq(q+p)$ the sum of the roots is $-\frac{29}{21}$ and

the product of the roots is $\frac{10}{21}$, so

$$pq(q+p) = -\frac{29}{21} \left(\frac{10}{21}\right) = -\frac{290}{441}$$
.

$$10. \ \frac{31315_8}{72632_8} \ \ \text{and} \ \frac{72632_8}{353150_8} \ .$$

15.
$$F + V - 2 = E$$
 so $30 + V - 2 = 60$, so $V = 32$.

- 16. For three lengths to form a triangle a+b>c which is true for 6,8,9 and 6,8,12 and 6,9,12 and 8,9,12.
- 24. $2\sin x \cos x = -\sin x$ then $\sin x (2\cos x + 1) = 0$,

 $\sin x = 0$ when $x = 0, \pi$ and $\cos x = -\frac{1}{2}$ when $x = \frac{2\pi}{3}, \frac{4\pi}{3}$.

26.
$$\frac{d}{d\theta}\cos(2\theta^2) = -\sin(2\theta^2)(4\theta) = -4\theta\sin(2\theta^2).$$

- 27. The average rate of change is the slope of the secant between the endpoints of the interval or $\frac{f(3)-f(-2)}{3-(-2)}=19$
- 29. "SWEETWATER" has 10 letters with 3-E's, 2-W's and 2-T's, so the number of possible arrangements

$$\frac{10!}{(3!)(2!)(2!)} = 151,200.$$

30. Since all three men work at the same rate, Carl could finish the job himself in 36 hours. If he completes a wall that is four times as big, it will take him 4(36) = 144 hours.

34.
$$\lim_{x \to 3} \frac{2x+4}{2x-7} = \frac{10}{-1} = -10$$

35.
$$(x-y)^2 = x^2 - xy + y^2$$
, $x^3 - y^3 = (x-y)(x^2 + xy + y^2)$
so $x^3 - y^3 = (x-y)[(x-y^2) + 3xy] = 3(3^2 + 3.7) = 90$

37. 3x = 6(17), x = 34 and BC = 34 + 3 = 37.

39.
$$\binom{9}{3} \left(\frac{2}{x^2}\right)^6 \left(x^4\right)^3 = 84 \left(\frac{64}{x^{12}}\right) \left(x^{12}\right) = 5376$$

$$43. \frac{100_6 n}{n} = \frac{224.2424..._6}{22424..._6}$$

$$= \frac{2.2424..._6}{222_6} \text{ and } n = \frac{35}{86_6}.$$

- 44. For an obtuse triangle, $a^2 + b^2 < c^2$ which of the values shown only $8^2 + 8^2 < 14^2$.
- 45. Use law of cosines $28^2 = 32^2 + QR^2 2.32(QR)\cos 60^\circ$, $784 = 1024 + (PQ)^2 32(PQ)$, $0 = (PQ)^2 32(PQ) + 240$ and the product of the roots is 240.
- 48. c-8=a+b, $c^2-16c+64=a^2+2ab+b^2$, -16c+64=2(8), c=3 and 6c=18.
- 52. Sum of the roots is 19, semiperimeter is 9.5 and the area is $\sqrt{9.5 f(9.5)} \approx 14.8$.

58.
$$A = 4$$
, then $\frac{4}{9} = \frac{1}{B + \frac{1}{C+1}}$, $\frac{9}{4} = B + \frac{1}{C+1}$, $B = 2$,

$$\frac{1}{4} = \frac{1}{C+1}$$
 and $C = 3$ so $A + B + C = 9$.

60.
$$-3\int_{-9}^{1} f(x)dx + \int_{-9}^{-1} 9dx = -3(48) + 9(10) = -54$$
.