

TMSCA HIGH SCHOOL MATHEMATICS TEST #4 © NOVEMBER 15,2014

GENERAL DIRECTIONS

1. About this test:

- A. You will be given 40 minutes to take this test.
- B. There are 60 problems on this test.
- 2. All answers must be written on the answer sheet/Scantron form/Chatsworth card provided. If you are using an answer sheet, be sure to use **BLOCK CAPITAL LETTERS**. Clean erasures are necessary for accurate grading.
- 3. If using a scantron answer form, be sure to correctly denote the number of problems not attempted.
- 4. You may write anywhere on the test itself. You must write only answers on the answer sheet.
- 5. You may use additional scratch paper provided by the contest director.
- 6. All problems have **ONE** and **ONLY ONE** correct [BEST] answer. There is a penalty for all incorrect answers.
- 7. Calculators used on this test must be conform to the UIL standards. Graphing calculators are allowed. Calculators need not be cleared.
- 8. All problems answered correctly are worth **SIX** points. **TWO** points will be deducted for all problems answered incorrectly. No points will be added or subtracted for problems not answered.
- 9. In case of ties, percent accuracy will be used as a tie breaker.

TMSCA TMSCA

2014-2015	ГMSCA	Mathematics	Test Four	
2011 2010		manenation	100010001	

1.	What is $\frac{13}{24} \div 0.55$	5+	0.65?						
A)	$\frac{65}{294}$	B)	$\frac{13}{8}$	C)	$\frac{1027}{1080}$	D)	$\frac{195}{434}$	E)	$\frac{2821}{4320}$
2.	2. The full cost of a bunch of flowers is \$15.99. Lesley bought 5 bunches with a 60% sale discount. The sales clerk then applied a 15% student discount to Lesley's total bill. How much did Lesley pay for the flowers including sales tax of 8.25%?								
A)	\$27.18	B)	\$29.43	C)	\$44.14	D)	\$15.57	E)	\$22.07
3. A)	Find the number o 6	f pos B)	itive integral divis 7	cors o C)	of 366. 9	D)	8	E)	4
4.	On a map of Texas	s, El	Paso and Texarka	na are	e $15\frac{1}{8}$ inches apar	t. Th	ne legend for the m	nap s	hows that $\frac{3}{4}$
	inches on the map	repre	esents 40 miles. A	ppro	ximately how far	is El	Paso from Texark	ana?	
A)	454 miles	B)	600 miles	C)	807 miles	D)	630 miles	E)	908 miles
5.	If $\frac{47-3x}{x^2-2x-15} = \frac{1}{2}$	$\frac{A}{x-5}$	$+\frac{B}{x+3}$, then $A+B$	B =					
A)	5	B)	11	C)	-3	D)	7	E)	-4
6.	Let $X = \{m, a, s, c\}$	$,o,t\}$	$, Y = \{s, p, o, r, t\}$	and 2	$Z = \left\{ p, o, i, n, t, s \right\}.$	Hov	w many elements a	re in	
	$(X \cap Z) \cup (Z \cap Y)$)∪($X \cap Y$)?	~	10	-	_	-	
A)	6	B)	4	C)	10	D)	5	E)	3
7.	Given $P(-3,4)$ and	d Q	(6, -11) find an eq	uatio	n of the perpendic	ular l	Disector of \overline{PQ} .		
A)	3x - 5y = 22	B)	3x + 5y = 7	C)	3x - 5y = 13	D)	3x + 5y = -29	E)	3x - 5y = 7
8.	A smaller pulley w cm. Find the spee diameters and the	vith a d of smal	a radius of 12 cm i the larger pulley if ler pulley runs at 3	s con f the s 3553	nected with a fan speeds of the pulle rpm.	belt t ys ar	o a larger pulley v e in inverse propo	vith a rtion	a diameter of 44 to their
A)	6513 rpm	B)	969 rpm	C)	4225 rpm	D)	1938 rpm	E)	3081 rpm
9. A)	How many disting 20160	uisha B)	able arrangements 40320	can b C)	be made with the l 5760	etters D)	in the words "TII 10080	MBU E)	KTU" 6480
10.	10. A right cone has a radius of 18.3 inches and a vertex angle of 40°. What is the volume of the cone? (nearest cubic inch)								
A)	17633 in ³	B)	7648 in ³	C)	4128 in ³	D)	10516 in ³	E)	3076 in ³
11.	A box contains five made using only the	ve roo hree	ls that are 5'', 8'', rods at a time?	10"	, 12" and 14". H	ow m	any different obtu	ise tr	iangles can be
A)	3	B)	6	C)	4	D)	5	E)	7
12. A)	The intersection of Orthocenter	f the B)	altitudes of a trian Median	gle is C)	s the Centroid	D)	Circumcenter	E)	Incenter
13.	A i	s the	set of all points ((x, y)	the difference of w	hose	distances from tw	o di	stinct fixed
	points is constant.		r (·	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
A)	Ellipse	B)	Circle	C)	Hyperbola	D)	Cartoid	E)	Parabola

- 14. On the illustration of a circle, AD is a diameter, $AB \cong CD$ and mBC = 2mAB. Calculate $m \angle D + m \angle B$.
- 90° B) 45° C) 60° D) 75° E) 30° A)

15. The quality control worker at the peppermint factory selected a sample of eight bags. The bags contained 57, 64, 55, 68, 59, 57, 63, and 60 peppermints respectively. What is the sum of the mean, median and mode of this data set?

- A) 176.875 B) 174.625 C) 175.375 D) 58.968 E) 177.500
- 16. The graph of the polar equation $r = 1 2\cos\theta$ is a _____
- D) A) Rose Curve B) Lemniscate C) Circle Cardioid Limacon E) 17. 2+9+22+41+66...+281 =A) 1085 B) 355 C) 548 D) 829 E) 1055
- 18. Carla invited seven friends to a luncheon. In how many ways can Carla and her friends be seated around a round table?
- A) 64 B) 5040 C) 548 D) 40320
- E) 1055 19. Eric spins the spinner shown, where each sector is congruent. If it lands on a perfect 11 30 number he wins \$5. If it lands on an abundant number, he wins \$20. Otherwise, he 6 loses \$6. Assuming that it can't land on a line, what is the mathematical expectation of 1 one spin? 5 28
- A) \$3.88 B) \$2.75 C) \$3.25 D) 0 E) \$1.75 20. $(\sin x + \cos x)^2$
- A) $1-\sin 2x$ B) $1+\sin 2x$ C) $\sin 2x - 1$ D) $1 + 2\sin x$ E) $2\sin x - 1$
- 21. A cube is stretched so that the length is increased by 15%, the height is increased by 12% and the width is decreased by 9%. What is the percent change in the volume of the cube?
- A) 16.57% B) 17.21% D) 16.20% C) 15.92% E) 40.39%

22. The real number solution set for $3|4-5x| \le 9$ is

- 25. The distance between Los Angeles, CA and New York, NY is approximately 2700 miles. An airplane flying from L.A. to N.Y. can make the trip in 4 hours flying with the wind. The trip back takes 4.5 hours against the same wind. What would the speed of the airplane be without the wind?
- A) 568.4 mph B) 37.5 mph C) 637.5 mph D) 635.3 mph E) 600 mph

2

26.	If $\begin{pmatrix} 2\\ 0 \end{pmatrix}$	3 -1	$\begin{pmatrix} a \\ -8 \end{pmatrix} \left(- \right)$	$\begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix} =$	$=\begin{pmatrix} -11\\ 6a- \end{pmatrix}$	1, find	the valu	e of <i>a</i> .								
A)	-2			B)	1		C)	0		D)	-1		E)	3		
27.	The po	oints	P(-2, 2)	11),	Q(1,k)) and R	(7,32)ar	e collin	ear. Fin	d the va	alue of <i>k</i> .					
A)	6			B)	3		C)	18		D)	15		E)	9		
28. A farmer plans to fence a rectangular pasture adjacent to a river. The pasture must contain 180,000 square meters in order to provide enough grass for the herd. What length of pasture should he leave open to the river in order to minimize the length of fencing on the rest of the pasture?																
A)	300 1	n		B)	424 n	1	C)	848 m		D)	600 m		E)	900	m	
29.	Integr	ate: ∫	$\sin\left(\frac{\theta}{2}\right)$	$\left(\right) \cos \left(\left(-\frac{1}{2} \right) \right) \right)$	$s\left(\frac{\theta}{2}\right)d$	heta .										
A)	cos($2\theta)+$	С	B)	$-\frac{\cos}{2}$	$\frac{\theta}{2}$ + C	C)	2sin $ heta$	+C	D)	$-\frac{\sin\theta}{2}+$	-C	E)	2co	$s\left(\frac{\theta}{2}\right)$	+C
30. Two soccer teams, A and B play a series of three games. The probability that team A wins any given match is 0.5, while the probability that team B wins any given match is 0.3. What is the probability that the series is a tie?																
A)	0.110)		B)	0.458		C)	0.118		D)	0.008		E)	0.18	8	
31.	Deteri	nine	the nur	nber	of non	-negativ	e integer	r solutic	ons to p	+q+r	=10.					
A)	14			B)	231		C)	210		D)	66		E)	55		
32. A)	What 1935	is the	sum o	f all B)	2-digit 1741	number	s whose C)	tens dig 1953	gits are d	livisible D)	by 3 or 9 1759)?	E)	1290)	
33. Mr. Data gives a ten question quiz to his class. When he is done grading, he gives the following frequency table to his class and offers extra credit to the first student to find the mean. What is the mean number of questions the students got right on the quiz?																
		Q	uestior	ns Ri	ght	2	3	4	5	6	7	8	9		10	
		Nur	nber of	f Stu	dents	1	4	2	5	4	8	4	2		1]
A)	6.00			B)	6.03		C)	6.50		D)	3.44		E)	7		
$34. \ 323_4 + 545_6 + 767_8 = \underline{\qquad}_{10}.$																
A)	1635			B)	771		C)	1076		D)	1759		E)	1290)	
35. Mrs. Cook has chocolate, cinnamon, butterscotch, and peanut butter chips in her pantry. She also bought four colors of sprinkles to use as decoration. If Mrs. Cook always puts two types of chips and two colors of sprinkles on each batch of cookies, how many distinct types of cookies can she make with her supplies?																
A)	9			B)	18		C)	0		D)	36		E)	24		
36.	Quadr	ilater	al ABC	CD h	as verti	ices (-9	,3), (-4	,6), (2	,1) and ((8, -2) r	espectivel	ly. Wha	t is tł	ne are	a of	
A)	9 9)?		B)	18		C)	32		D)	36		E)	24		

TMSCA 14-15 HSMA Test 4

37.	If $\frac{x-9}{x+4} + \frac{x+4}{x-9}$ is	equa	l to the mixed nun	nber	$A + \frac{B}{(x+4)(x-9)}$, the	n $B =$		
A)	25	B)	13	C)	169	D)	36	E)	5
38.	Given the vectors degree)	u = 0	6i - 7j and $v = -12$	3 <i>i</i> + 5	5j, find the measu	re of	the angle between	the	vectors. (nearest
A)	62°	B)	41°	C)	110°	D)	152°	E)	20°
39.	On triangle <i>ABC</i> , Find $x + y$	AB	=8 cm, $BC = 7$ cm	ı, and	d $m \angle A = 60^\circ$. Let	x and	d y be the two pos	sible	lengths of \overline{AC} .
A)	15 cm	B)	11 cm	C)	9 cm	D)	12 cm	E)	8 cm
40.	What is the coeffic	cient	of the constant ter	m in	the expansion of	$\left(x^3-\right)$	$\left(-\frac{2}{x}\right)^{8}$?		
A)	1120	B)	1456	C)	28	D)	1792	E)	448
41.	Solve $5 + 2\ln x = 4$	4 for	х.						
A)	$e^{-\frac{1}{2}}$	B)	$e^{\frac{5}{4}}$	C)	$\ln\left(\frac{1}{2}\right)$	D)	$e^{\frac{1}{2}}$	E)	$\ln\left(\frac{\sqrt{5}}{2}\right)$
42.	A fair coin is tosse	ed siz	times. What is th	ne pro	obability of at leas	t fou	r consecutive head	ls?	
A)	$\frac{15}{64}$	B)	$\frac{1}{2}$	C)	$\frac{11}{22}$	D)	$\frac{11}{21}$	E)	$\frac{3}{22}$
43.	John is 6' 2'' tall.	At 2	o 2:05 pm, his shadov	w is 4	4' 11'' long. If hi	s dau	ghter's shadow is	3' 7'	³² 'long at the
A)	same time, how ta 3' 9''	ll is l B)	his daughter? (near 4' 2''	rest in C)	nch) 4' 6''	D)	3' 11''	E)	4' 8''
44.	Grandpa needs to carries 22 flavors	bring of ice	home four carton e cream, how many	s of i y dist	ce cream to share inct orders could	with Grand	all of his grandkic dpa bring home?	ls. If	the corner store
A)	7315	B)	14950	C)	12650	D)	11132	E)	2600
45.	Which "trapezoida of a set of number	al me s?	ean" is used for star	ndaro	d deviation and is	consi	dered to be a mea	sure	of the magnitude
A)	Heronian	B)	Root-mean-squar	e	C) Harmonic	D)	Centroidal	E)	Contraharmonic
46.	Find the area of th	e elli	ipse defined by the	equa	ation $49x^2 - 294x$	+16	$y^2 + 160y = -57$.	E)	2.5
A)	49π	B)	36π	C)	28π	D)	16π	E)	35π
47.	Peter can peel a pe Paula can peel a p	eck o eck o	f potatoes in 2 hou of potatoes in	irs. 1	The same job takes ninutes together?	s Pau (neai	la 1 hour and 42 m rest minute)	nnut	es. Peter and
A)	61	B)	55	C)	58	D)	53	E)	56
48.	If $y = \frac{2x-5}{x+4}$, what	at is t	he sum of all real	value	es of x for which $\frac{d}{d}$	$\frac{dy}{dx} = \frac{dy}{dx}$	$\frac{dx}{dy}$?		
A)	16	B)	-8	C)	4	D)	-16	E)	0
49. A)	Triangle ABC is a 259 in ² B)	n equ 100	uilateral triangle. I in ² C) 179 i	Find n ²	the area of triangle D) 194 in ²	e BD E)	E. (nearest tenth) 129 in ²	2	3.7 E D C

50.	The repeating dee	cimal	0.363636	in base	7 c	an be	written as v	which	of the followin	g fraction	ons in base 7?
A)	12	B)	36	(C)	6		D)	12	E)	6
	$\overline{22}_{7}$		3437			11_{7}			3437		<u>66</u> 7
51.	Classify the grap	h of 3	$3x^2 + 8xy + 4y$	$v^2 - 7 =$	0.						
A)	Ellipse	B)	Hyperbola	(C)	Circ	e	D)	Parabola	E)	None of these
52.	The radius of a sp	oheric	cal balloon is	decreas	sing	g at a i	rate of 0.2 c	entim	eters per secon	d. How	fast is the
• •	surface area of th	e ball	loon changing	g when	the	radiu	s is 19.3 cm	n? (ne	arest tenth)	-	a a a 34
A)	-32.3 cm ³ /sec	B)	$-97.0 \text{ cm}^3/\text{s}$	ec (Ľ)	-92.6	o cm ³ /sec	D)	-94.8 cm ³ /sec	E)	-93.7 cm ³ /sec
53.	The table below s	shows al inte	s the effective	the 5-ve	st ra	ates of	n an investn	nent o	of \$2700 for eac	ch of 5 y	ears. What was
	Vear		1	ine J-ye	2	perio		nunu	<u>4</u>		5
	Percent		2.5%		2 1%		4 7%		11%	-2	<u>.</u>
	Tercent		2.370		170		1.770		1.170		
A)	0.21%	B)	2.07%	(C)	2.26	%	D)	0.41%	E)	0.46%
54.	If $f(x) = ax^4 + bx^4$	$x^2 + x$	and $f(5) =$	15 then	f	(-5)	=				
A)	10	B)	30	(C)	-10		D)	-5	E)	5
55.	The areas of the b	oases	of a frustum	are A_1	anc	A_2 and	nd the heigh	nt is 12	2 inches. The H	Heronia	n mean of A_1
	and A_{2} is 217π	in ² . I	Find the volu	ne of th	ne f	rustu	n.				
A)	$1302\pi \text{ in}^{3}$	B)	868π in ³	(C)	868	in ³	D)	1555π in ³	E)	$2604\pi {\rm in}^3$
,					- /		$(\mathbf{a})^2$,	$(2)^{3}$		
56.	What is the 10^{-8} c	ligit i	n the expansi	on of 1	+((x-2)	$+\frac{(x-2)}{2!}+$	$\frac{(x-1)}{3!}$	$\frac{2}{1} + \frac{(x-2)}{4!} + \frac{(x-2)}{$	whe	n $x = 3?$
A)	9	B)	3	(C)	0	2.	D)	2	E)	8
57.	The function f is	s such	that $\int_{-1}^{3} f(x)$	dx = 12	2.	What	is the value	of	$\int_{-1}^{3} (2f(x)+2) dx$	x ?	
A)	26	B)	14	(C)	32		D)	30	E)	24
58.	Point P has polar	coord	dinates $\left(11,\frac{1}{2}\right)$	$\left(\frac{1\pi}{6}\right)$. If	f po	oint P	is converted	d to re	ectangular coord	dinates,	where would
A)	point P lie on the QI	Carte B)	esian plane? QII	(C)	QIII		D)	QIV	E)	<i>x</i> -axis
59.	Two positive inte	gers	are in a ratio	of 7 to	12.	If th	e smaller nu	ımber	is increased by	3 and t	he larger number
	is increased by 18	8, the	resulting rati	o is 1 to	o 2.	. Wha	it is the sum	n of th	e original two i	ntegers	?
A)	114	B)	19	(C)	40		D)	57	E)	154
60.	Given that \overline{AB} is $\overline{CD} = 8$ in Find t	s a dia	ameter of the	circle s	hov (no	wn, \overline{B}	\overline{C} is tangent	t to th	e circle and m_{\perp}	∠BAC =	= 45 °, and
A)	45.3 in^2 B)	64.0	in^2 C)	128.0 i	n^2	D)	90.5 in^2	E)	32.0 in ²	А	
,											

2014-2015 TMSCA Mathematics Test Four Answers

1. B	21. B	41. A
2. B	22. C	42. B
3. D	23. E	43. C
4. C	24. E	44. C
5. C	25. C	45. B
6. B	26. A	46. C
7. A	27. C	47. B
8. B	28. D	48. B
9. D	29. B	49. E
10. A	30. E	50. A
11. D	31. D	51. B
12. A	32. A	52. B
13. C	33. B	53. D
14. B	34. B	54. E
15. A	35. D	55. E
16. E	36. C	56. D
17. E	37. C	57. C
18. B	38. D	58. D
19. D	39. E	59. A
20. B	40. D	60. B

2013-2014 TMSCA Mathematics Test Three Select Solutions

5. $47-3x = A(x+3) + B(x-5)$ so	44. $_{22+4-1}C_4 = 12650$	
A + B = -3	$(I)^2$ $\begin{bmatrix} I2 \end{bmatrix}^2$	
9. T and U each repeat once. The of	48. $\left(\frac{dy}{dx}\right) = 1$, so $\left \frac{13}{\left(x+4\right)^2}\right = 1$. Solve	
arrangements is $\frac{6!}{(2!)(2!)=10080}$.	$(x+4)^2 = 13$ or $(x+4)^2 = -1$. The	
17. The terms are given by the function	second equation has no real solutions and	
$3x^2 - 2x + 1$. The sum of the first 10 terms	the sum of the solutions in the first is -8.	
is 1055.	49. The triangle BDE has the same height	
18. 8! would give the number of	as BAC, but the base is $\frac{15}{23}$ of the base of	
arrangements in a line, but to eliminate rotations of the same arrangements, (n-1)!=7!=5040.	BAC. So the area is $\frac{13}{23} \left(\frac{23^2 \sqrt{3}}{4} \right) \approx 129$	
21 (1.15)(1.12)(0.01) 1 - 17.21%	$100n = 36.\overline{36}$	
21. (1.15)(1.12)(0.91)-1≈17.21%	50. $n = 0.\overline{36}$ so $\frac{36}{55} = \frac{12}{22}$.	
24. U C S	$66n = 36$ $66_7 22_7$	
$\left(\begin{array}{cc} 56 \\ 26 \end{array}\right) 38$	54. Let $X + 5 = 15$, so $X = 10$ and	
	f(-5) = 10 - 5 = 5.	
k - 11 = 32 - k using slope formula	56. Taylor series for $f(x) = e^{x-2}$ where	
$27.\frac{1}{1-(-2)} - \frac{1}{7-1}$ using slope formula	$x = 3$. $e^1 \approx 2.718281828$ the digit is 2.	
and $k = 18$.	$57 \int_{0}^{3} 2f(x) dx = 24$ and $\int_{0}^{3} 2 dx = 8$ so	
30. The two ways to tie are:	system $\int_{-1}^{2} 2f(x) dx = 24$ and $\int_{-1}^{2} 2dx = 8$ so together they are 32.	
TAB x 6 arrangements		
$(0.2)^3 + 6(0.2)(0.3)(0.5) = 0.188$	60 Draw in <i>BD</i> which forms two special right triangles ABD and CDB each of	
31. $_{10+3-1}C_{10} = 66$	which have base and heights of 8	
22 (20 + 21 + 20) + (60 + 61 + 60)		
52. (50+51+59)+(60+61+69) + (90+91+69) =		
3(1+2+3+9)+10(30+60+90) =		
135+1800=1935		
35. $_{4}C_{2}\Box_{4}C_{2} = 36$		
37. $((x-9)-(x+4))^2 = (-13)^2 = 169$		
40. $_{8}C_{6}\left(x^{3}\right)^{2}\left(-\frac{2}{x}\right)^{6} = 1792$		