

TMSCA HIGH SCHOOL MATHEMATICS TEST #5 © NOVEMBER 22,2014

GENERAL DIRECTIONS

1. About this test:

- A. You will be given 40 minutes to take this test.
- B. There are 60 problems on this test.
- 2. All answers must be written on the answer sheet/Scantron form/Chatsworth card provided. If you are using an answer sheet, be sure to use **BLOCK CAPITAL LETTERS**. Clean erasures are necessary for accurate grading.
- 3. If using a scantron answer form, be sure to correctly denote the number of problems not attempted.
- 4. You may write anywhere on the test itself. You must write only answers on the answer sheet.
- 5. You may use additional scratch paper provided by the contest director.
- 6. All problems have **ONE** and **ONLY ONE** correct [BEST] answer. There is a penalty for all incorrect answers.
- 7. Calculators used on this test must be conform to the UIL standards. Graphing calculators are allowed. Calculators need not be cleared.
- 8. All problems answered correctly are worth **SIX** points. **TWO** points will be deducted for all problems answered incorrectly. No points will be added or subtracted for problems not answered.
- 9. In case of ties, percent accuracy will be used as a tie breaker.

TMSCA 2014-2015 TMSCA Mathematics Test Five

1.	What is $\frac{(8+6)\cdot 3}{7\cdot 2+7\cdot 5}$	•2.3÷	-0.35?						
A)	$\frac{120}{7}$	B)	$\frac{379}{12}$	C)	$\frac{40}{7}$	D)	$\frac{13}{30}$	E)	$\frac{13}{10}$
2.	If P is 224% more	than	Q and R is $\frac{3}{2}$ of Q), the	en R is what percer	nt of	P? (nearest tenth)	?	
A)	67.0%	B)	149.3%	C)	46.3%	D)	6.7%	E)	56.7%
3.	An electronics sho Carrie checked ou discount on her ite	op adv t at 10 ems? (vertises a 20% off 0 am and used a c (nearest %)	sale oupo	with an additional n that gave her 15	10% % of	o off if purchases a f her total. What	are m is the	ade before noon. total percent
A)	61%	B)	30%	C)	45%	D)	53%	E)	39%
4.	If $\frac{x^3 + 6x^2 + 12x - 5x^2}{x^4 - 8x^2 + 16x^2}$	+8 =	$\frac{ax+b}{x^2-4x+4}$, find	a+b					
A)	2	B)	3	C)	-2	D)	1	E)	-3
5. A)	Which of the follo y-6=3(x-2)	wing	is an equation of C) $y+2=3$	the li f(x+	ne shown right? 6) E)	y-2	$=\frac{1}{3}(x-6)$		8 6 2 -2 9 2
B)	y-2=3(x-6)		D) $y-2 = \frac{1}{3}$	$\frac{1}{3}(x-$	6)				
6.	Using the piecewis	se fur	nction shown calc	ulate	f(1) + f(5) - f(-)	-4).	$f(x) = \begin{cases} x^2 \\ x \end{cases}$	+2x	$-3, x \leq -3$
A)	-2 B) 3		C) 4	D)	7 E) 1		$\int (x) - \begin{cases} x \\ x \end{cases}$	+1, +2,	$x \ge 2$
A) 7.	-2 B) 3 The point M is the	e mid	C) 4 point of \overline{AB} . The	D) ne coo	7 E) 1 ordinates of the thr	ree po	points are $A(x,7)$,	+ 1, + 2, B(-	-3 < x < 2 $x \ge 2$
A)7.	-2 B) 3 The point M is the $M(1,14)$. Calcula	e mid ate x	C) 4 point of \overline{AB} . The $+ y$.	D)	7 E) 1	ree po	points are $A(x,7)$,	+ 1, + 2, B(-	-3 < x < 2 $x \ge 2$
A)7.A)	-2 B) 3 The point M is the $M(1,14)$. Calcula 16	e mid ate x B)	C) 4 point of \overline{AB} . Th + y. 6.5	D) ne coo C)	7 E) 1 ordinates of the the 14.5	ree po D)	points are $A(x,7)$, 21	+ 1, + 2, B(- E)	-3 < x < 2 $x \ge 2$ $x \ge 2$ $x \ge 2$ $x \ge 2$ $x \ge 2$ $x \ge 2$ $x \ge 2$
 A) 7. A) 8. A) 	-2 B) 3 The point M is the $M(1,14)$. Calcula 16 What is the lateral centimeters? (near 2142 cm ²	e mid ate x B) surfa est sc	C) 4 point of \overline{AB} . Th + y. 6.5 ace area of a cylin puare centimeter) 0870 cm^2	D) ne coo C) der if	7 E) 1 ordinates of the the 14.5 The diameter is 25 9680 cm^2	ree po D) 5π ce	p $(x) = \begin{cases} x \\ x \\ x \end{cases}$ oints are $A(x,7)$, 21 ntimeters and the	+1, +2, B(- E) heigh	-3 < x < 2 $x \ge 2$ $(x \ge 2)$ $(x \ge 2)$ (x
 A) 7. A) 8. A) 9 	-2 B) 3 The point M is the $M(1,14)$. Calcula 16 What is the lateral centimeters? (near 3142 cm ²	e mid ate x B) surfa rest sc B)	C) 4 point of \overline{AB} . Th + y. 6.5 ace area of a cylin juare centimeter) 9870 cm ² sts such that the s	D) ne coo C) der if C)	7 E) 1 ordinates of the thr 14.5 The diameter is 25° 9689 cm ²	ree po D) 5π ce D)	p $(x) = \begin{cases} x \\ x \\ x \end{cases}$ oints are $A(x,7)$, 21 ntimeters and the 19559 cm ² times the sum of t	+1, +2, B(- E) heigh E)	$x \ge 2$ $x \ge 1$ $x \ge 1$ x = 1 x
 A) 7. A) 8. A) 9. 	-2 B) 3 The point M is the $M(1,14)$. Calcula 16 What is the lateral centimeters? (near 3142 cm ² A two-digit number what is the sum of	e mid ate x B) surfa rest so B) er exi f the t	C) 4 point of \overline{AB} . Th + y. 6.5 ace area of a cylin puare centimeter) 9870 cm ² sts such that the s two digits of the n	D) ne coo C) der if C) quare umbo	7 E) 1 ordinates of the the 14.5 The diameter is 25 9689 cm^2 e of the number is er?	ree po D) 5π ce D) nine	p $(x) = \begin{cases} x \\ x - \\ $	+1, +2, B(- E) heigh E) the nu	$x \ge 2$ $x \ge 1$ $x \ge 1$ x = 1 x
 A) 7. A) 8. A) 9. A) 	-2 B) 3 The point M is the $M(1,14)$. Calcula 16 What is the lateral centimeters? (near 3142 cm ² A two-digit number M what is the sum of 9	e mid ate x B) surfa rest so B) er exi f the t B)	C) 4 point of \overline{AB} . The $+y$. 6.5 ace area of a cylin puare centimeter) 9870 cm ² sts such that the s two digits of the m 15	D) ne coo C) der if C) quare umbo C)	7 E) 1 ordinates of the the 14.5 The diameter is 25 9689 cm^2 of the number is er? 6	ree p D) 5π ce D) nine D)	p $(x) = \begin{cases} x \\ x - \\ $	+1, +2, B(- E) heighthe matrix E) E)	$x \ge 2$ $x \ge 1$ $x \ge 1$ x = 1 x
 A) 7. A) 8. A) 9. A) 10. A) 	-2 B) 3 The point M is the $M(1,14)$. Calcula 16 What is the lateral centimeters? (near 3142 cm ² A two-digit number of 9 Which of the follo 1287	e mid ate x B) surfa est sc B) er exi f the t B) owing B)	C) 4 point of \overline{AB} . Th + y. 6.5 ace area of a cylin juare centimeter) 9870 cm ² sts such that the s two digits of the n 15 numbers appears 924	D) ne coo C) der if C) quare umbo C) in th C)	7 E) 1 ordinates of the thr 14.5 The diameter is 25 9689 cm ² of the number is er? 6 $e 13^{th}$ row of Pasc 3432	ree p D) 5π ce D) nine D) al's t D)	p $(x) = \begin{cases} x \\ x - x \\ x - x \end{cases}$ oints are $A(x, 7)$, 21 ntimeters and the 19559 cm ² times the sum of x 18 riangle? 330	+1, $+2,$ $B(-$ $E)$ $heigh$ $E)$ $the nu$ $E)$ $E)$	$x \ge 2$ $x \ge 2$ y and $x \ge 1$ 19739 cm^2 y 19739 cm^2 y 12 1001
 A) 7. A) 8. A) 9. A) 10. A) 11. A) 	-2 B) 3 The point M is the M(1,14). Calcula 16 What is the lateral centimeters? (near 3142 cm ² A two-digit number What is the sum of 9 Which of the follo 1287 The intersection of Point	e mid ate x B) surfa rest sc B) er exi f the t B) wing B) f two B)	C) 4 point of \overline{AB} . The $+y$. 6.5 ace area of a cylin puare centimeter) 9870 cm ² sts such that the s two digits of the m 15 numbers appears 924 distinct planes is Line	D) ne coo C) der if C) quare umbo C) in th C) a C)	7 E) 1 ordinates of the thr 14.5 The diameter is 25 9689 cm ² e of the number is er? 6 e 13^{th} row of Pasc 3432 Triangle	ree p D) 5π ce D) nine D) al's t D) D)	p $(x) = \begin{cases} x \\ x \\ x \end{cases}$ oints are $A(x,7)$, 21 ntimeters and the 19559 cm ² times the sum of the 18 riangle? 330 Plane	F = 1, $F = 1,$ F	$x \ge 2$ $x \ge 2$ y and $x \ge 1$ 19739 cm^2 y 19739 cm^2 y 19739 cm^2 12 1001 Parallelogram

TMSCA 14-15 HSMA Test 5

13. Events A and B are independent events. If $p(A \cap B) = 0.32$ and p(A) = 2p(B). Calculate $p(A \cup B)$. A) 80% B) 88% C) 68% D) 82% E) 52% C 14. On the circle shown, AC is tangent to the circle. Find the area of the circle. A) 144π B) 81π C) 48π D) 32π E) 36π 15. x = 37 + y and xy = 620. Calculate $x^2 + y^2$. B) 2609 A) 2289 C) 1989 D) 3229 3658 E) 16. In the rectangle shown right, what is *x* in terms of *a* and *b*? 90 + a - bA) a+bB) b-aC) *a*−*b* D) 90-a+b E) 17. A kayak can travel 48 miles downstream in 6 hours, while it would take 12 hours to make the same trip upstream. Find the speed of the kayak in still water? A) 4 mph B) 6 mph D) 8 mph E) 12 mph C) 2 mph18. Determine the period of $y = \frac{3}{2}\sin\left(\frac{1}{3}x - 7\right) + 8$. B) D) 6π A) 2π E) 2π 7π 3 3 19. The function f(x) = _____ will produce this graph. C) $3\cos(\pi(x-1))$ E) A) $3\cos(\pi x+1)$ $3\cos(x+\pi)$ D) $3\cos(\pi x - 1)$ B) $3\sin(\pi(x+1))$ 20. Use the Fibonacci-type sequence 12, A, 7, B, C, 11, D.... to find the value of D. 11 A) 20 B) 31 C) -5 D) 9 E) 21. If the numbers $\{1, 2, 3, 4, 5, ...\}$ continue in the triangular pattern shown below, the arithmetic mean of the 11th row would be? 2 3 4 C) 57 A) 111 E) 73 5 6 7 8 9 10 11 12 13 14 15 16 B) 133 D) 157 22. At a concession stand, five hot dogs and four hamburgers cost \$14.50; four hot dogs and five burgers cost \$14.75. Find the cost of an order of six hamburgers and three hot dogs. A) \$14.25 B) \$15.25 C) \$14.50 D) \$15.00 \$15.50 E) 23. Find k when $4+5(k+8) \div 3 = 8-3k$. B) -4 A) 7 C) -2 D) 5 -3 E) 24. Which of the following series converges? $\sum_{n=1}^{\infty} \frac{n}{1000(n+1)} \quad C) \quad \sum_{n=1}^{\infty} \frac{(-3)^n}{n!}$ D) $\sum_{n=1}^{\infty} \left(\frac{3}{2}\right)^n$ A) B) $\sum \log n$ 25. A bowl with colored chocolate candies contains 33% blue candies, one-fifth yellow candies and 15% green candies. The remaining candies are orange. If one candy is drawn at random, what are the odds that it will not be orange? A) 17:8 B) 8:25 C) 33:67 D) 8:17 E) 25:8

TMSCA 14-15 HSMA Test 5

A)	m = k - 2	B)	m = k + 18	3 (C)	m = k - 30	D)	m = k + 46	E)	m = k + 30
27. Mr. Meredith set up a scavenger hunt for his pre-calculus class. Group one travelled 200 yards on a bearing of 212°, then 350 yards on a bearing of 97°, then 275 yards on a bearing of 325° to retrieve their clues. How far were they from their point of origin? (nearest vard)										
A)	716 yd	B)	85 yd	(C)	306 yd	D)	97 yd	E)	132 yd
28.	If $y = \tan \theta$, for	what v	value of θ d	loes $\frac{dy}{dx} =$	$=\frac{dx}{dy}$, ?				
A)	$\frac{\pi}{2}$	B)	$\frac{\pi}{4}$	(C)	π	D)	$\frac{\pi}{2}$	E)	$\frac{\pi}{6}$
29	\angle The point P has	coordi	4 nates (2,1)	P is ref	lect	ed over the lin	e v = -3	o x translated 2 r	inits hor	izontally in the
27.	nositive directio	n then	5 units ver	rtically in	th	e positive direc	y = y	r, translated 2 t	nito noi	instes of S
A)	(4,4)	B)	(4,0)	(C)	(3,7)	D)	(-1, -2)	E)	(1,3)
30.	A student counc	il cons	ists of eigh	t boys an	d n	ine girls. How	y many v	vays can a four	person	delegation be
A)	formed for the s 784	tate con B)	nference if 1296	the deleg	gati C)	on must consis 1008	t of two D)	girls and two b 1152	oys? E)	1224
31.	If $\frac{x+2}{x-7} + \frac{x-7}{x+2} =$	=A+-	$\frac{B}{x+2)(x-1)}$	$\overline{7}$, then	<i>B</i> =	:				
A)	25	B)	81	(C)	5	D)	-5	E)	-9
32.	The Real value	solutio	n set of $ 3x $	-1 + 3 <	11	is				
A)	$\left\{ x \middle -3 < x < -\frac{7}{3} \right\}$	B) {	$\left[x\middle \{x < -3\} \cup\right.$	$ \left\{x > \frac{7}{3}\right\} $	С	$\int \left\{ x \right -3 < x < \frac{7}{3}$	} D)	$\left\{x \middle \left\{x < -\frac{7}{3}\right\} \cup \left\{x\right\}$	> 3}	$E) \left\{ x \left -\frac{7}{3} < x < 3 \right\} \right\}$
33.	Find the sum of number	all 2-d	igit numbe	rs whose	dig	gits differ by 5	and reve	ersing the digits	results	in a square
A)	220	B)	94	(C)	155	D)	125	E)	172
34.	Two workers ca	n paint	a fence in	three hou	Irs.	How long wo	uld it ta	ke six workers t	to paint	a fence twice as
A)	4 hr 48 min	B)	4 hr	n pant at (2)	1 hr 12 min	D)	2 hr 24 min	E)	4 hr 8 min
35.	Find the sum of	the inf	inite series	: -1.2+	0.9	-0.675+0.506	525			
A)	_ <u>11</u>	B)	8	(C)	_ <u>12</u>	D)	_24	E)	_ <u>24</u>
20	35	1	5			5	- 4 1	5		35
30. A)	A regular decage 90°	on has B)	vertices A, 72°	В, С, D, (C)	., I and J respective 108°	D)	144°	E)	126°
37.	The harmonic m of A and B^{2}	nean of	A and B is	s 26.8 and	l th	e contraharmo	nic mea	n is 27.9. What	is the a	rithmetic mean
A)	27.34	B)	27.25	(C)	27.33	D)	27.37	E)	27.35 _A
38.	Find AC. (near	est tent	h)							\bigwedge
A)	9.9 cm I	3) 11.8	cm	C) 13.3	cm	D) 12.5	5 cm	E) 12.4 cm	1 D ²	4 cm 14 cm B
									D	4 cm C 10 cm -

26. When $3x^3 + 2x^2 - 7x + k$ is divided by (x-2) the remainder is *m*. Find the value of *m* in terms of *k*.

39 If $f(x) = \sin x$ then $\lim \frac{f\left(\frac{\pi}{3} + h\right) - f\left(\frac{\pi}{3}\right)}{2} =$									
	$\prod_{j=1}^{n} f(x) = \sin x \operatorname{tree}^{-1}$		h		_	D)	_	T)	
A)	$\frac{1}{2}$	B)	1	C)	$\frac{\sqrt{3}}{2}$	D)	$-\frac{\sqrt{3}}{2}$	E)	$-\frac{1}{2}$
40.	Simplify: $(3-3\sqrt{3})$	$\overline{-8}$)(1	$1+2\sqrt{-50}$						
A)	$-123 + 36i\sqrt{2}$	B)	$117 + 36i\sqrt{2}$	C)	$123-24i\sqrt{2}$	D)	$-117 + 36i\sqrt{2}$	E)	$123 + 24i\sqrt{2}$
41.	Let $a_1 = 12$, $a_2 = 5$	5 and	$a_n = 2a_{n-1} - 3a_{n-2}$. Fi	nd a_5 .				
A)	147	B)	-56	C)	-339	D)	-159	E)	-33
42.	Simplify $a^4 \times b^3 \div$	$a^{-1} \times$	$a^{-4} \times a^2 \div b^2 \div b^{-3}$	•					
A)	$\frac{a^5}{b^2}$	B)	a^7	C)	a^7b	D)	a^5b^2	E)	a^5
43.	Let A and B be the	roots	s of $f(x) = 8x^2 + 1$	18x-	-35. Find the valu	ie of	$A^4 + 4A^3B + 6A^2B$	$3^2 + 4$	$AB^3 + B^4$.
A)	6561	B)	16	C)	6561	D)	256	E)	256
	256		6561		16	,	81		6561
44.	If $f(a) = g(a) = c$	0, f'	(a) and $g'(a)$ exi	st an	d $g'(a) \neq 0$ then	$\lim_{x \to a} \left(\cdot \right)$	$\frac{f(x)}{g(x)} = \frac{f'(a)}{g'(a)}.$	This	is
A)	Definition of Deri	vative	e C) L'H	opita	l's Rule	E) I	Fundamental Theore	em of	Calculus
B)	Intermediate Valu	e The	eorem D) Roll	e's T	heorem				
45.	Given $GCF(36, k)$)=12	2 and $LCM(36, k)$) = 2	52, find the value	of <i>k</i> .			
A)	84	B)	48	C)	42	D)	63	E)	126
46.	Solve: $\log_2 x + \log_2 x$	$g_2(x)$	-6) = 4						
A)	9	B)	6	C)	-3	D)	4	E)	8
47.	Set $S = \{1, 2, 3, 4, 5\}$,6,7}	. How many 5-el	emei	nt subsets of set S	are th	ere?		
A)	32	B)	128	C)	49	D)	21	E)	35
48. A)	The diameters of t figure at random, y 55% B)	he co what 27%	oncentric circles or is the probability C) 59%	n the that i	right are 14 cm, 12 t will land outside D) 45%	2 cm the s	and 6 cm. If a dat haded area? (near E) 73%	rt hit: est %	s the
49.	The letters in the v	vorld	PARALLEL are	arran	ged in a line. How	v ma	ny of distinct arrai	ngem	ents are
A)	3360	B)	10080	C)	6720	D)	40320	E)	720
50.	The points $A(-8, 0)$	D), B	(1,12), C(12,3) and	d D((3,-5) are plotted	and c	onnected to form	the c	onvex
A)	quadrilateral ABC 153 units ²	D. W B)	hat is the area of 87 units ²	this o C)	quadrilateral? 213 units ²	D)	170 units ²	E)	173 units ²
51.	Let $f(x) = ax^5 + b$	$bx^{3} + b$	cx-8 and $f(-6)$	=14	. Calculate $f(6)$.				
A)	-28	B)	22	C)	-30	D)	-14	E)	-6

Copyright © 2014 TMSCA

52.	$11_3 + 11_4 + 11_5 + 11_1$	₆ +11	$l_7 + 1 l_8 + 1 l_9 = $	10 ·					
A)	88	B)	44	C)	52	D)	49	E)	72
53.	53. What is the area of a regular hexagon in terms of the length, <i>s</i> , of one side?								
A)	$3s^2\sqrt{3}$	B)	$s^2\sqrt{3}$	C)	$s^2\sqrt{3}$	D)	$3s^2\sqrt{3}$	E)	$2s^2\sqrt{3}$
	2		6		4		4		3
54.	How many solution	ons ar	e there to the equa	ation	11x + 9y = 216, w	here	x and y are whole	num	bers?
A)	0	B)	2	C)	3	D)	4	E)	1
55.	How many petals	does	the graph of the c	curve	$r = 2\cos 5\theta$ have	?			
A)	4	B)	10	C)	7	D)	2	E)	5
56.	Simplify to the nea	arest	ten-thousandth pla	ace:	$1+(1.5)+\frac{(1.5)^2}{2!}+$	<u>(1.5</u> 3!	$\frac{)^3}{4!} + \frac{(1.5)^4}{4!} + \dots$		
A)	0.0707	B)	0.4055	C)	4.4817	D)	0.9975	E)	0.0262
57.	$\det \begin{bmatrix} \cos A & \sin A \\ \sin B & \cos B \end{bmatrix}$]=							
A)	$\sin(A+B)$	B)	$\cos(A+B)$	C)	$\cos(A-B)$	D)	$\sin(2B)$	E)	$\cos(2A)$
58.	Find the range, or	rang	es, of values of K	for w	which $f(x) = Kx^2$ -	-4 <i>x</i> -	+5-K has two dis	tinct	real roots.
A)	1 < K < 4	B)	K < 1 and $K > 4$	C)	K < -6 and	D)	$K < \frac{4}{5}$	E)	-6 < K < 2
59.	How many numbe	ers in	the form a^4 , whe	re a	$\in \mathbb{Z}^+$ are factors of	f (3!)	(7!)(9!)?		
A)	5	B)	7	C)	9	D)	6	E)	8
60.	What is the centro	idal	mean of 30 and 50)? (ne	earest tenth)				
A)	40.0	B)	38.7	C)	40.8	D)	38.9	E)	41.1

2014-2015 TMSCA Mathematics Test Five Answers

1. C	21. A	41. B
2. C	22. D	42. B
3. E	23. C	43. A
4. B	24. C	44. C
5. A	25. A	45. A
6. C	26. B	46. E
7. E	27. B	47. D
8. B	28. C	48. D
9. C	29. E	49. A
10. A	30. C	50. E
11. B	31. B	51. C
12. D	32. E	52. D
13. B	33. C	53. A
14. C	34. B	54. C
15. B	35. E	55. E
16. D	36. B	56. C
17. B	37. E	57. B
18. D	38. D	58. B
19. C	39. A	59. E
20. A	40. E	60. C

2013-2014 TMSCA Mathematics Test Five Select Solutions

51. X - 8 = 14, so X = 22. 13. $0.32 = p(A) p(B) = 2(p(B))^2$ and -22 - 8 = -30p(B) = 0.453. A hexagon is 6 equilateral triangles, $p(A \cup B) = p(A) + p(B) - p(A)p(B)$ so $A = 6\left(\frac{s^2\sqrt{3}}{4}\right) = \frac{3s^2\sqrt{3}}{2}$ So $p(A \cup B) = 0.8 + 0.4 - (0.8)(0.4) = 0.88$ 56. McClaurin series for 15. $x^{2} + y^{2} = (x - y)^{2} + 2xy =$ $e^{1.5} \approx 4.48168907...$ $37^2 + 2(620) = 2609$ 57. det = $\cos A \cos B - \sin A \sin B =$ $\cos(A+B)$ 21. $\frac{11^2 + 10^2 + 1}{2} = 111$ 58. 16-4(K)(K+5) > 0, so K < 1 and 26. Evaluate K > 4. f(2) = 24 + 8 - 14 + k = 18 + k = m $60. \ \frac{2}{3} \left(\frac{(30+50)^2 - (30)(50)}{30+50} \right) = 40.8\overline{3}$ 28. $\left(\frac{dy}{dx}\right)^2 = 1$, so $\left(\sec^2\theta\right)^2 = 1$, $\cos\theta = \pm 1$ at any multiple of π . 31. $(-7-2)^2 = 81$ 33. 61+94=155 34. The rate of an individual worker is $\frac{1}{4}$. so to paint a fence that is 4 times as large with 6 workers $6\left(\frac{1}{6}\right)t = 4$ and t = 4 hours. 36. The measure of each arc between two consecutive letters is 36°. $\angle BHF$ is an inscribed angle with an intercepted arc of 144°, so $m \angle BHF = 72$ °. 38. Use law of cosines. $(AC)^{2} = 14^{2} + 10^{2} - 2(14)(10)\cos 60 \approx 12.5$ 43. The expression is the binomial expansion of $(A+B)^4$. $(-\frac{18}{8})^4 = \frac{6561}{256}$. 45. 36k = 12(252), so k = 8446. $\log_2(x^2-6x) = 4$, so $16 = x^2-6x$ and x = 8 or x = -2. 8 is the only solution that works in the original equation.