

TMSCA HIGH SCHOOL MATHEMATICS TEST#7 © JANUARY 17, 2015

GENERAL DIRECTIONS

1. About this test:

- A. You will be given 40 minutes to take this test.
- B. There are 60 problems on this test.
- All answers must be written on the answer sheet/Scantron form/Chatsworth card provided. If you are using an answer sheet, be sure to use **BLOCK CAPITAL LETTERS**. Clean erasures are necessary for accurate grading.
- 3. If using a scantron answer form, be sure to correctly denote the number of problems not attempted.
- 4. You may write anywhere on the test itself. You must write only answers on the answer sheet.
- 5. You may use additional scratch paper provided by the contest director.
- 6. All problems have **ONE** and **ONLY ONE** correct [BEST] answer. There is a penalty for all incorrect answers.
- 7. Calculators used on this test must be conform to the UIL standards. Graphing calculators are allowed. Calculators need not be cleared.
- 8. All problems answered correctly are worth **SIX** points. **TWO** points will be deducted for all problems answered incorrectly. No points will be added or subtracted for problems not answered.
- 9. In case of ties, percent accuracy will be used as a tie breaker.

TMSCA TMSCA

			2014-2015	TN	ASCA Mathema	tics Tes	st Seven		
1.	$6^{2}(0.\overline{15}) + 6^{3}(0.\overline{21})$)+6.	÷8.25 =						
A)	$\frac{14159}{275}$	B)	101	C)	$\frac{2217}{22}$	D)	$\frac{5013}{50}$	E)	52
2.	The GDP of the U	nited	States in 1980 w	'as app	proximately 2.80	525×10	¹² dollars. In 2010	0 it w	as
	approximately 1.4	9583	$\times 10^{13}$ dollars. W	hat wa	as the percent ind	crease in	n the GDP during	the 3	30 year period
A)	between 1980 and 4.2%	2010 B)	9? (nearest tenth of 80.9%	of a pe C)	ercent) 62.3%	D)	422.6%	E)	622.6%
3. A)	In a survey of 150 science course and 26	junic l 12 v B)	ors, researchers for vere taking both 1 50	ound t math a C)	hat 75 students v and science. Hov 38	vere tak w many D)	ting a math course students were no 62	e, 49 ot taki E)	were taking a ing either? 56
4.	The line <i>a</i> passes t	hrou	gh the points (-1)	2,5)	and $(4, -2)$. The	e line b	is perpendicular	to lin	e <i>a</i> and passes
	through the point	(2,-7). Which of the	follov	wing is an equati	on of li	ne <i>b</i> ?		
A)	16x + 7y = 17	B)	7x + 16y = -98	C)	16x - 7y = 81	D)	7x - 16y = 126	E)	16x - 7y = 17
5.	The center of a cir triangle.	cle ci	rcumscribed arou	und a	triangle has a cer	nter at t	he intersection of	the _	of the
A)	Medians B)	An	gle Bisectors	C)	Radii D)	Altitu	ides E) Perj	pendi	cular Bisectors
6. A)	Joe has been pricin must pay \$132. T \$18.86	ng Sp wo ac B)	eed-Pass train fa lults and three ch \$20	res foi ildren C)	r a group trip to 1 1 must pay \$94. \$18.80	New Yo Find the D)	ork. Three adults e price of an adul \$18	and f t's tic E)	four children eket. \$21.50
7	Given that A and F	are	independent ever	nts If	the probability of	- f A is t	riple the probabil	ity of	f B and
	$p(A \cap B) = 0.307$	2 cal	culate $p(A)$.					10) 01	
A)	8	B)	1	C)	32	D)	24	E)	96
	25		$\overline{3}$		625		25		625
8. On a map of Texas, one inch represents 75 miles. On this same map, El Paso is approximately $10\frac{3}{4}$ inches									
A)	from Texarkana. 563 miles	Appro B)	oximate the actua 806 miles	al dista C)	ance from El Pas 1000 miles	o to Te D)	xarkana. 751 miles	E)	657 miles
9.	Determine the nur	mber	of non-negative	intege	er solutions to p	+q+r	= 25 .		
A)	351	B)	325	C)	312	D)	338	E)	324 11 in
10. Calculate the capacity of the length of guttering shown in the diagram. (nearest tenth of a gallon)									
A)	19.6 gal B)	21.8	8 gal C) 14.	1 gal	D) 15.7 ga	1 E)	16.9 gal $\sqrt{\frac{7 \text{ in}}{9 \text{ in}}}$	1 in	6 ft
11	. Ninety-two miles	per ł	our equals		_feet per second.	(neares	st whole number)	-	
A)	8096	B)	135	C)	45	D)	485760	E)	4116
12	The measure of o	ne int	terior angle of a 1	regula	r dodecagon is _		_°.	E,	150
A)	120	B)	135	C)	144	D)	148	E)	150

Copyright © 2014 TMSCA

13. The figure shown is composed of three semicircles where E is the midpoint of the diameter *BD*. If *mBEA* = 30 ° and *AE* = 10 cm then *EC* = ____ D E) $5\sqrt{3}$ D) $15\sqrt{3}$ A) 15 B) 10 C) $5\sqrt{3}$ 2 14. $\frac{x^3 - 7x^2 - 4x + 28}{x^3 + 2x^2 - 49x - 98} \div \frac{x + 2}{x^2 - 49} =$ A) $\frac{x^2 - 5x - 14}{x + 7}$ B) $x^2 - 5x - 14$ C) $\frac{x^2 + 9x + 14}{x - 7}$ D) $\frac{x^2 + 5x - 14}{x - 2}$ E) $\frac{x^2 - 9x + 14}{x + 2}$ 15. Phil, Frank and Forest can each peel a pound of potatoes in 8 minutes, 6 minutes and 4 minutes respectively. How much longer will it take Phil to peel 20 pounds of potatoes alone than it would take Frank and Forest working together? A) 112 minutes B) 40 minutes C) 12 minutes D) 48 minutes 160 minutes E) 16. $\frac{d}{dx}\left(x\sqrt[3]{2x}\right) =$ C) $5\sqrt[3]{2x}$ A) $4\sqrt[3]{2x}$ B) $2\sqrt[3]{2x}$ D) E) $4\sqrt[3]{4x}$ $2\sqrt[3]{4x}$ 17. How many distinct arrangements are possible of the letters in the word "SASSAFRASS"? B) 5040 D) 30240 A) 3628800 C) 25200 E) 820 18. Larry consistently makes 60% of the free throws he attempts. If he tries to shoot six times, what is the probability that he makes at least four? 972 B) C) D) A) 3969 1424 14086 E) 1701 15625 3125 3125 15625 3125 19. Which of the following is not a triangular number? A) 1225 B) 3916 C) 1711 D) 5040 820 E) 20. If A and B are the roots of $f(x) = 6x^2 - 13x - 63$, calculate $A^4 + 4A^3B + 6A^2B^2 + 4AB^3 + B^4$. 2825761 B) 28561 C) 2825761 D) 1427161 A) E) 28561 1296 20736 20736 1296 1296 21. At the beginning of a day trip, Daryn had no money, but his three brothers did. Adam gave Daryn one-sixth of his money. Brad gave Daryn one-third of his money and Carl gave Daryn one-fifth of his money. Each gave Daryn the same amount of money. What fraction of the brothers' money did Daryn have after the exchange? C) $\frac{7}{10}$ B) A) 3 $\frac{3}{8}$ $\frac{3}{10}$ $\frac{3}{11}$ 14 22. Given $\ln 7 = P$ and $\ln 4 = Q$ which of the following is equal to $\ln(6.125)$? B) $P^2 - 2Q$ C) $P^2 \div 2Q$ D) $P^2 - \frac{3}{2}Q$ $2P - \frac{3}{2}Q$ A) E) $2P \div \frac{3}{2}Q$ 23. Solve $1 - \sin^2 \theta = 1 - \cos^2 \theta$ where $\frac{\pi}{2} \le \theta \le \frac{3\pi}{2}$. A) $\frac{5\pi}{6}$ and $\frac{7\pi}{6}$ B) $\frac{2\pi}{3}$ and $\frac{4\pi}{3}$ C) π D) $\frac{3\pi}{4}$ and $\frac{5\pi}{4}$ E) $\frac{\pi}{2}$ and $\frac{3\pi}{2}$

24.	24. Let $f(x) = x^4 + x^2 + x + 3$. According to Descartes' Rule of Signs, how many possible negative real roots									
	are there?									
A)	0 or 1	B)	0 or 2	C)	1 or 3	D)	0	E)	1	only
25.	$\sum_{k=2}^{\infty} \frac{2}{3} \left(-\frac{3}{4} \right)^k =$									
A)	8	B)	2	C)	8	D)	3	E)	3	
	21		$-\frac{1}{7}$		3		14		$\overline{2}$	
26.	When the polynom	nial _.	$f(x) = 3x^5 + Ax^4 + $	$-7x^2$	+Bx-13 is divide	d by	x-1 the remaind	er is -	13.	When
	f(x) is divided by	y x +	1 the remainder is	-23.	Calculate $A + B$					
A)	18	B)	-12	C)	-10	D)	-14	E)	40	
27. A)	 27. A prom committee charged \$22 for a single ticket and \$36 for a couple ticket. If the ticket sales totaled \$12972 and they expect 690 people to attend based on ticket sales, how many singles bought tickets? A) 157 B) 138 C) 532 D) 276 E) 266 									
28.	In triangle <i>ABC</i> , <i>A</i> measure of $\angle B$.	AB =	$12 \mathrm{cm}, BC = 22 \mathrm{cm}$	n and	$\angle B$ is obtuse. T	he ar	ea of the triangle	is 66	cm ²	. Find the
A)	120°	B)	135°	C)	150°	D)	105°	E)	100)°
29.	29. A class contains 12 girls and 14 boys. The teacher selects four students at random. What are the odds that all of the students selected are girls?									
A)	77	B)	99	C)	77	D)	99	E)	45	
	1150		2891		1073		2990		91	'
30.	30. The graph of a parabola $f(x) = 3(x-p)(x-q)$ is shown. The coordinates of the									
	points shown are	A(-5)	(0), B(0,b) and 0	C(6,0	0). Find the value	e of b		A		C
A)	-90 B)	-30	C) -45		D) -150]	E) -120			
31.	$12_4 + 23_5 + 34_6 + 4$	$5_7 + 3_7$	$56_8 + 67_9 = _$	10					В	ł
A)	181	B)	175	C)	237	D)	154	E)	214	ł
32. Find the slope of the line tangent to the curve $2x^2 - 5y^3 = 13$ at $(-3,1)$.										
A)	_ <u>19</u>	B)	_2	C)	<u>19</u>	D)	_4	E)	_2	-
	15		15		5		5		5	
33.	How many solutio	ons ar	e there to $7x + 8y$	= 22	l where $x, y \in \mathbb{Z}^+$.					
A)	4	B)	24	C)	7	D)	18	E)	8	
34. A)	Given the sequence 424	e 4, 7 B)	7, 14, 25, 40, 59, <i>a</i> 331	c, <i>b</i> , <i>c</i> C)	, calculate the val 140	ue of D)	$\begin{array}{c} a+b+c \\ 175 \end{array}$	E)	249)
35.	35. A right circular cone has a radius of 13 in. and is 18 in. tall. What is the greatest number of fluid ounces or water that could be poured into the cone before flowing over? (nearest fl. oz.)									

 A) 5296
 B) 1270
 C) 3810
 D) 1765
 E) 2444

36.	Given that $\sin \theta =$	$\frac{5}{13}$	and $\frac{\pi}{2} \le \theta \le \pi$, find	d sin	2 heta .				
A)	120	B)	_ 70	C)	119	D)	_ 71	E)	120
	169		169		169		169		169
37.	The table below sh	lows	s the performance	of an i	investment each y	ear fo	or 5 years. What	is the	average
	percentage growth	for	the investment ov	er the	5 years. (nearest t	tenth	of a percent)		
		-	Year	1	$\frac{2}{3}$		4 5		
		L	Percent Growth	+10%	% -6% +9%	-4	4% +8%		
A)	3.4%	B)	7.4%	C)	7.0%	D)	18	E)	3.2%
38.	Circle <i>C</i> is tangent calculate the ratio	to c of th	circle A and to both the area of circle C	n radii to the	of circle A shown area of circle A.	n. If	$m \angle DAB = 60^{\circ}$	(
A)	1 B)	1	C)	1	D) 1		E) 1		A
	$\frac{1}{3}$	$\overline{2}$	-	9	$\frac{1}{4}$		$\frac{1}{6}$		
39.	Find the number o	f po	sitive integral divi	sors o	f 960.		C C		
A)	28	B)	24	C)	27	D)	26	E)	30
40.	Two elements of the	he se	et {1,2,3,5,8,13} at	e sele	cted at random.	What	is the probability	that t	he sum of the
	two elements is also	so ar	n element of the se	t?					
A)	2	B)	<u>1</u>	C)	<u>1</u>	D)	4	E)	2
	9		9		6		15		5
41.	The coordinates of	the	quadrilateral show	vn are	integers. Calcula	ate the	e area of the 4	╘┼╶╆╸	┝┼┼┼┼┟┤
	quadrilateral.						2	₂ ⊢∦ –	
A)	29 B)	29	S C)	31	D) 32		E) 30 (
11)	2) D)	20	c) .	51	D) 52		L) 50		
		dv	dx		π		-	┢╋╋	│
42.	Solve the equation	$\frac{dy}{dx}$	$=\frac{dx}{dy}$ when $y = co$	$5s^{2}(2)$	x) and $0 \le x \le \frac{\pi}{2}$.		-4	-4	-2 0 2 4
A)	$\pi 3\pi 5\pi 7\pi$	B)	$\pi 5\pi 7\pi 11\pi$	(\mathbf{C})	$ \underline{\pi} \ \underline{5\pi} \ \underline{7\pi} \ \underline{11} $	<u>π</u> Ι	$D) \underline{\pi} \ \underline{\pi} \ \underline{\pi} \ \underline{\pi} \ \underline{\pi}$	E)	$\underline{\pi} \ \underline{\pi} \ \underline{3\pi} \ \underline{\pi}$
	16'16'16'16		24'24'24'24		12'12'12'12	2	12'6'4'3		8'4'8'2
43.	Classify the graph	of v	with the equation:	$4x^{2} + 1$	$11xy - 9y^2 + 2x - 3$	3y+5	5 = 0		
A)	Circle	B)	Ellipse	C)	Centroid	D)	Hyperbola	E)	Parabola
44.	Given that x varies	es di	rectly with $y - 3$,	and x	= 9 when $y = 6$.	Find	the value of y wh	en x =	= 37 .
A)	138	B)	46	C)	69	D)	40	E)	64
	37		3		37		3		37
45.	Let $f(x) = 2x - 3$	and	$g(x) = \frac{x+3}{2}$. Fire	nd f	$g\left(\frac{a-4}{5}\right)$.				
A)	a-4	B)	a-6	C)	3a - 12	D)	2a - 8	E)	2a - 8
-,	5		10	- /	5	,	15	.,	
1-	A B –	4x-	-53		C				~
46.	$\frac{1}{x-7} + \frac{1}{x+2} = \frac{1}{x^2}$	-5x	-14. $A+B=$						
A)	-57	B)	-4	C)	-49	D)	14	E)	-5

47. If
$$y = \frac{9}{x}$$
 and $x + y = 12$, then $x^3 + y^3 = x^3$
A) 1701 B) 1512 C) 1404 D) 1620 E) 1728
48. Let a, b, c and d be integers such that $a < b, b < c$ and $c = d$. The mode of the four numbers is 22. The range of the four numbers is 16, and the mean of the four numbers is 16. What is the value of b^2
A) 6 B) 15 C) 14 D) 10 E) 16
49. Simplify: $\left(\frac{a^2}{b^2}\right) \pm a^3 \times b^3$
A) $\frac{b^2}{a}$ B) $\frac{1}{ab^3}$ C) a^2b^3 D) $\frac{b^3}{a}$ E) a^2b
50. Find the area of triangle *ABC* if $m \angle A = 50$, $m \angle C = 80^\circ$ and $AC = 12\,\text{cm}$. (nearest square centimeter)
A) 71 cm² B) 72 cm² C) 143 cm² D) 13 cm² E) 142 cm²
51. If $s(x)$ is the stant asymptote of $f(x) = \frac{x^2 + 5x + 8}{x + 3}$, then $s(5) =$
A) 5 B) 3 C) 2 D) 7 E) 8
52. Given $f^*(x) = 2, f'(2) = 5$ and $f(2) = 10$ calculate $f(7)$.
A) 56 B) 60 C) 15 D) 49 E) 4
53. Evaluate $\int_{-4}^{3} [3f(x) - 3] dx$ if $\int_{-4}^{3} f(x) dx = 95$.
A) 282 B) 276 C) 246 D) 285 E) 324
54. How may perfect cubes are factors of $(3!)(4!)(5!)$?
A) 4 B) 7 C) 5 D) 4 E) 6
55. If $\frac{x - 7}{x + 4} + \frac{x + 4}{x - 7}$ is equal to the mixed number $A + \frac{B}{(x + 4)(x - 7)}$, then $B =$
A) 64 B) 121 C) 8 D) 11 E) 9
56. The areas of the bases of a frustum A, and A₂, and the height is 18 inches. The Heronian mean of A, and A₂ is 311 \pi in². Find the volume of the frustum.
A) 1866 mi³ B) 622x m³ C) 109.1 m² D) 218.3 m² E) 11196\pi m³³
57. The ratio of angle measures in a triangle is 2:3:4. If the longest side of the triangle is 18 in., what is the area of the triangle $z^3 = 65 - 142t$ fm z .
A) 13-5i B) 5-2i C) 44 - 122i D) 2-5i E) 10-2i
58. Given $z^3 = 21 - 20i$ and $z^3 = 65 - 142t$ fm z .
A) 13-5i B) 5-2i C) 44 - 122i D) 2-5i E) 10-2i
59. The discriminant of $f(x) = (3x - 5)(2x + 7)$ is:
A) 821 B) 961 C) -719 D) 1801 E) 121
60. $(\ln x)^2 + (\ln x^2)^2 + (\ln x^{3})^2 =$
A) 1240 $(\ln x)^2$ B) $\ln x^{200}$ C) 14400 ln (x^2) D) 1240 ln x^2 E) $(\ln x)^{200}$

Copyright © 2014 TMSCA

2014-2015 TMSCA Mathematics Test Seven Answers

1. E	21. A	41. C
2. D	22. E	42. B
3. C	23. D	43. D
4. C	24. B	44. B
5. E	25. D	45. A
6. B	26. C	46. B
7. D	27. B	47. C
8. B	28. C	48. C
9. A	29. B	49. A
10. B	30. A	50. A
11. B	31. A	51. D
12. E	32. D	52. B
13. C	33. E	53. C
14. E	34. B	54. E
15. A	35. D	55. B
16. A	36. E	56. C
17. B	37. E	57. A
18. E	38. C	58. A
19. D	39. A	59. B
20. E	40. D	60. A

