

TMSCA HIGH SCHOOL MATHEMATICS TEST #7 © JANUARY 18, 2014

GENERAL DIRECTIONS

1. About this test:

- A. You will be given 40 minutes to take this test.
- B. There are 60 problems on this test.
- 2. All answers must be written on the answer sheet/Scantron form/Chatsworth card provided. If you are using an answer sheet, be sure to use **BLOCK CAPITAL LETTERS**. Clean erasures are necessary for accurate grading.
- 3. If using a scantron answer form, be sure to correctly denote the number of problems not attempted.
- 4. You may write anywhere on the test itself. You must write only answers on the answer sheet.
- 5. You may use additional scratch paper provided by the contest director.
- 6. All problems have **ONE** and **ONLY ONE** correct [BEST] answer. There is a penalty for all incorrect answers.
- 7. Calculators used on this test must be conform to the UIL standards. Graphing calculators are allowed. Calculators need not be cleared.
- 8. All problems answered correctly are worth **SIX** points. **TWO** points will be deducted for all problems answered incorrectly. No points will be added or subtracted for problems not answered.
- 9. In case of ties, percent accuracy will be used as a tie breaker.

TMSCA 2013 - 2014 TMSCA High School Mathematics Test 7

1. Evaluate $(0.0666...)^{-1} + (0.0090909...)^{-1} - (0.222...)^{-2}$. $-\frac{29}{198}$ C) $\frac{419}{4}$ B) A) 631 D) 2663 E) 241 132 891 2 2. Susan plans on buying 4 shirts for \$27.95 each, 2 skirts for \$32.99 each and a pair of school shoes for \$54.95. The local tax rate is 8.5%. How much money will she save if she makes her purchases during tax-free weekend? A) \$19.78 B) \$16.98 C) \$12.65 D) \$19.20 E) \$16.48 3. Events A and B are independent such that P(A) = 5P(B) and $P(A \cup B) = 0.7875$. Find P(B). A) 0.75 B) 0.20 C) 0.125 D) 0.375 E) 0.15 4. On the diagram, FC is the geometric mean of AB and ED, AF = 4.5, FE = 6.3and EC = 15.4. Find FB. (nearest tenth) A) 9.2 C) 11.0 D) 10.7 E) 10.5 B) 11.9 5. $f(x) = ax^3 - bx^2$ where $a, b \in \mathbb{Z}^+$. The graph of f(x) has a point of inflection when x =_____ B) $-\frac{2b}{3a}$ C) $\frac{b}{3a}$ D) $-\frac{b}{a}$ E) $\frac{2b}{3a}$ A) 6. Which of the following is an equation of the perpendicular bisector of the segment with endpoints (12, -5)and (7,2)? A) 5x - 7y = 58B) 7x-5y = -21 C) 7x+5y = 64D) 5x-7y = -95 E) 5x+7y = -957. The time it takes to empty a cistern is inversely proportional to the number of pumps used. It takes 90 minutes with 4 pumps, how long will it take with 9 pumps? A) 20 min D) 40 min E) 45 min B) 25 min C) 30 min 8. Given x - y = -5 and xy = 37 find the value of $x^3 - y^3$. B) 60 A) -310 C) 245 D) -680 E) -865 9. The base radius of a cone is 7 cm. and the vertex angle is 48°. Find the total surface area of the cone to the nearest square centimeter. C) 207 cm^2 D) 378 cm^2 $422\,\mathrm{cm}^2$ B) 532 cm^2 E) A) 361 cm^2 10. Find the area of the circle defined by the equation $x^2 - 4x + y^2 + 12y = 41$. D) 49π A) 18π B) E) 81π 4π C) 36π 11. f(x) = 2x + 5 and $g(x) = x^2 + 8$. Find g(f(-x)). B) $4x^2 - 20x + 33$ C) $-2x^2 - 13$ D) $2x^2 + 20x + 17$ E) $4x^2 + 33$ A) $2x^2 + 21$ 12. The function f(x) shown below is periodic and has a domain $0 \le x \le 40$. Evaluate f'(37). 6 4 2 n

A) 0

Copyright © 2013 TMSCA

9

12

D) -2

15

18

E) undefined

3

0

B) 1.5

6

C) 0.5

1WISCA 13-14 115WI	A lest /			I age 2	
13. $\angle A$ and $\angle B$ are complementary and $m \angle B$ is 22° less than three times $m \angle A$. Find the measure of the supplement of $\angle A$.					
A) 50.5°	B) 56°	C) 101°	D) 152°	E) 146°	
14. If $\frac{3x+1}{4x-3} + \frac{2x-1}{3x+5} = \frac{Ax^2 + Bx + C}{Px^2 + Qx + R}$, then $\frac{A+B+C}{P+Q+R} =$					
A) 29	B) 13	C) 33	D) 49	E) 29	
7	B) $\frac{13}{31}$	8	D) $\frac{49}{31}$	E) $\frac{29}{31}$	
15. Let $f(x) = \frac{7}{x-6}$. On which of these in	ntervals is f not continu	ious?		
A) (6,∞)	B) [-6,0]	C) [0,∞)	D) [0,6)	E) all of these	
16. $A = \begin{bmatrix} 1 & -1 \\ 4 & 7 \end{bmatrix}$ and	$\mathbf{H} B = \begin{bmatrix} 3 & -5 \\ 1 & 0 \end{bmatrix}.$ Find the	ne product of the eleme	ents in $2A - B$.		
A) -294	B) -168	C) -630	D) -63	E) 13	
17. The dots are 6 un	its apart vertically and	horizontally. Find the	area of the shaded region	on.	
A) 378 units ² B)	324 units ² C) 300	5 units^2 D) 360 un	its ² E) 352 units^2		
18. If $\int_{6}^{12} f(x) dx = 19$	9.5, find $\int_{6}^{12} \left[3f(x) + 5 \right]$				
A) 63.5	B) 118.5	C) 42.5	D) 88.5	E) 67.5	
19. Blackbeard sailed	l from his hideout at be	earing 275° for 40 mile	s to island A, then on to	island B at a bearing	
			ly back to his hideout?		
A) 58 mi	B) 44 mi	C) 43 mi	D) 41 mi	E) 52 mi	
			which of the following		
A) $\frac{6}{11}$	B) $\frac{16}{22_7}$	C) $\frac{9}{22_7}$	D) $\frac{9}{11}$	E) $\frac{36}{101}$	
117 21 How many distir	nct arrangements can be		117 "DFRIVATIVE"?	1017	
	B) 453600			E) 604800	
22. Solve $2\sin x = \tan x$, for $0 < x \le \frac{\pi}{2}$.					
A) <u>π</u>	B) $\frac{\pi}{2}$	C) π	D) <u><i>π</i></u>	E) no solution	
23. The polynomial	$x^2 - 2x - 15$ is a factor	of $x^3 + (a-5)x^2 + (1-$	-4a)x-30. Find the va	alue of the constant <i>a</i> .	
A) -5	B) -6	C) 2	D) 3	E) 5	
24. The sixth term of	a geometric sequence	is 25.6 and the twelfth	term is 1638.4. Find th	ne second term.	
A) 0.8	B) 3.2	C) 1.6	D) 2.4	E) 0.4	
	the inscribed circle. (ne) 43.3 m ² C) 3	earest tenth) 1.4 m^2 D) 56.2	m ² E) 78.5 m ²	10 m	
				10 m	
	C	onvright @ 2013 TMS	CA		

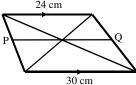
Copyright © 2013 TMSCA

TMSCA 13-14 HSMA Test 7

26. Mr. Carl's calculus class has 14 girls and 9 boys. They want to put together a volleyball team for the school charity tournament. If the team must consist of 3 boys and 5 girls, how many different teams could be formed from the class?						
	B) 168168	C)	121080960	D)	33022080	E) 20020
27. In a survey of 75 st How many students	udents, 32 listened to s listened to neither?	cour	ntry music, 41 liste	ened t	to pop music and	18 listened to both.
•	B) 27	C)	20	D)	9	E) 18
28. If the 1 at the top of A) 256	f Pascal's triangle is r B) 254		what is the sum of 1024		e numbers in row 9 512	9? E) 510
	B) $\frac{3172}{3}$	C)	$\frac{3554}{3}$	D)	$\frac{2696}{3}$	E) 1348
30. For a triangle ABC smaller area.	with sides $AB = 12$, 1	BC =	$= 10.44 \text{ and } m \angle A =$	= 60°	, there are two pos	ssible areas. Find the
A) $30\sqrt{3}$		C)	$42\sqrt{3}$	D)	$15\sqrt{3}$	E) $35\sqrt{3}$
31. $f(x) = \frac{3x-2}{2x+4}$. $f(x) = \frac{3x-2}{2x+4}$	$^{-1}(3) =$					
A) -2	B) $\frac{7}{10}$	C)	$-\frac{10}{9}$	D)	$-\frac{14}{3}$	E) -3
32. Given the Fibonacc		2, A, I			B+C.	E) 1
33. Find the volume of	,	- /	-	2)	c	13 in
	г пе пулг гланушаг б	orism.				1.5 m
A) 320 in^3 B) 300				E) 32	25 in^3	5 in 10 in
	0 in^3 C) 360 in^3		D) 350 in ³			5 in 10 in
 A) 320 in³ B) 30 34. Circle <i>P</i> has a radiu of circle <i>P</i>? (neares) 	0 in ³ C) 360 in ³ us of 7 cm. \overline{AB} is a ch	nord	D) 350 in^3 D) 350 in^3 D) of circle <i>P</i> and <i>AB</i>	B = 5.		5 in 10 in
 A) 320 in³ B) 30 34. Circle <i>P</i> has a radiu of circle <i>P</i>? (neares) 	0 in ³ C) 360 in ³ us of 7 cm. \overline{AB} is a ch t tenth) B) 6.4cm	nord o C)	D) 350 in^3 D) 350 in^3 D) 350 in^3 D) 350 in^3 D) AH 3.2 cm	B = 5.	6 cm. How far is	\overline{AB} from the center
A) 320 in^3 B) 300^{-100} 34. Circle <i>P</i> has a radiu of circle <i>P</i> ? (neares A) 2.0 cm 35. $f(x) = 7x^4 + 6x^3 - 100^{-100}$	0 in ³ C) 360 in ³ us of 7 cm. \overline{AB} is a ch t tenth) B) 6.4cm	nord (C) -4) =	D) 350 in^3 D) 350 in^3 D) 350 in^3 D) 350 in^3 D) AH 3.2 cm	B=5. D)	6 cm. How far is	\overline{AB} from the center
A) 320 in^3 B) 300^{-100} 34. Circle <i>P</i> has a radiu of circle <i>P</i> ? (neares A) 2.0 cm 35. $f(x) = 7x^4 + 6x^3 - 100^{-100}$	0 in ³ C) 360 in ³ us of 7 cm. \overline{AB} is a ch t tenth) B) 6.4cm $9x^2 + 11x - 12$. $f''(-B)$ -1432	nord (C) -4) =	D) 350 in^3 D) 350 in^3 D) 350 in^3 D) 350 in^3 D) AB	B=5. D)	6 cm. How far is 0.6 cm	\overline{AB} from the center E) 4.2 cm
A) 320 in^3 B) 300^{-100} 34. Circle <i>P</i> has a radiu of circle <i>P</i> ? (neares A) 2.0 cm 35. $f(x) = 7x^4 + 6x^3 - 4x^3 - 4x^3 - 5x^4 + 6x^3 - 5x^4 + 6x^4 - 5x^4 + 6x^5 - 5x^5 + 5x^$	0 in ³ C) 360 in ³ us of 7 cm. \overline{AB} is a ch t tenth) B) 6.4cm $9x^2 + 11x - 12$. $f''(-B)$ -1432	nord (C) -4) = C)	D) 350 in^3 D) 350 in^3 D) 350 in^3 D) 350 in^3 D) AB	B = 5. D) D)	6 cm. How far is 0.6 cm	\overline{AB} from the center E) 4.2 cm
A) 320 in^3 B) 300^{-10} 34. Circle <i>P</i> has a radiu of circle <i>P</i> ? (neares A) 2.0 cm 35. $f(x) = 7x^4 + 6x^3 - 4x^3 - 5x^4 + 6x^3 - 5x^4 + 6x^5 - 5x^5 - 5x^5 + 5x^5 - 5x^5$	0 in ³ C) 360 in ³ as of 7 cm. \overline{AB} is a ch t tenth) B) 6.4cm $9x^2 + 11x - 12$. $f''(-B) - 1432$ = a + bi. $a + b =B) -80$	nord (C) -4) = C) C)	 D) 350 in³ D) 350 in³ D) of circle <i>P</i> and <i>AP</i> 3.2 cm 1208 -12 	B = 5. D) D)	6 cm. How far is 0.6 cm 1470	\overline{AB} from the center E) 4.2 cm E) 1326
A) 320 in^3 B) 300^{-10} 34. Circle <i>P</i> has a radiu of circle <i>P</i> ? (neares A) 2.0 cm 35. $f(x) = 7x^4 + 6x^3 - 4x^3 - 5x^4 + 6x^3 - 5x^4 + 6x^5 + 5x^5 + 5x^5$	0 in ³ C) 360 in ³ as of 7 cm. \overline{AB} is a ch t tenth) B) 6.4cm $9x^2 + 11x - 12$. $f''(-B) - 1432$ = a + bi. $a + b =B) -80in the triangle diagram45 C) 48$	nord (C) -4) = C) C) m. (n	 D) 350 in³ of circle <i>P</i> and <i>AE</i> 3.2 cm 1208 -12 earest degree) D) 47 	3 = 5. D) D) D)	6 cm. How far is 0.6 cm 1470	\overline{AB} from the center E) 4.2 cm E) 1326

Copyright © 2013 TMSCA

TMSCA 13-14 HSMA Test 7


39. A plane flew 1750 km in 6 hours with a tail wind of a constant velocity. It then flew back 540 km in 3 hours with a head wind of the same velocity. Find the speed of the wind.

E) $63\frac{2}{9}$ kmh⁻¹ D) A) B) $55 - \text{kmh}^{-1}$ C) $235\frac{5}{6}$ kmh⁻¹ $254\frac{4}{9}$ kmh⁻¹ $198 - \text{kmh}^{-1}$ 40. An airplane travelling at an altitude of 47,000 ft is 90 ground miles from its destination. If it flies in a straight line to land, what is the angle of depression? (nearest tenth) B) 8.3° D) 4.4° E) 3.7° A) 1.6° C) 5.6°

41. Find the Real number solution set of $|6-2x| \ge 4$.

A)
$$(-\infty,\infty)$$
 B) $(-\infty,-5] \cup [-1,\infty)$ C) $[1,5]$ D) $(-\infty,1] \cup [5,\infty)$ E) $[-5,-1]$
42 Find PO

42. Find PQ.

- $\frac{80}{3} \text{ cm} \qquad B) 27 \text{ cm} \qquad C) \frac{82}{3} \text{ cm} \qquad D) 12\sqrt{5} \text{ cm} \qquad E) 18+4\sqrt{5} \text{ cm}$
- 43. Evaluate: $\log_3 18 + \log_3 54 \log_3 144 + \log_3 4$
- A) 4 B) 3 C) 27 D) 2 E) 6

44. Find the slope of the graph of $2x^2 + 3y^2 = 11$ at the point (-2,1).

A) $\frac{4}{3}$ B) $\frac{3}{4}$ C) $\frac{19}{3}$ D) $-\frac{4}{3}$ E) $-\frac{19}{3}$

45. One edge of a regular tetrahedron is 7.2 m. What is the surface area? (nearest tenth) A) 119.2 m^2 B) 89.8 m^2 C) 75.1 m^2 D) 119.7 m^2 E) 104.8 m^2 46. Find the remainder of $(x^7 - 3x^6 - 4x^3 + 11x^2 - 9) \div (x+4)$.

A) -28749 B) 4247 C) -13223 D) 3655 E) 4007

47. Which of the following is an equation of the line through (4,3) with an *x*-intercept of 2.6? A) 10x - y = 37 B) 7x - 15y = -7 C) 15x - 7y = 39 D) x - 10y = -26 E) x + 10y = 17

48. Solve $2^{2x+1} - 2^{x+1} + 1 = 2^x$ for x. A) -1, 0 B) $\frac{1}{2}$, 1 C) -1, $\frac{1}{2}$ D) 0, 1 E) $0, \frac{1}{2}$

49. Find the equation of the directrix of the parabola with the equation $2x^2 - 4x + y + 4 = 0$. A) $y = \frac{8}{15}$ B) $x = -\frac{15}{8}$ C) $x = -\frac{8}{15}$ D) $y = -\frac{15}{8}$ E) $x = \frac{8}{15}$

50. If f is continuous on the closed interval [a,b] and k is any number between f(a) and f(b), then there is at least one number c in [a,b] such that f(c)=k. This is the ______,

(A) Sandwich Theorem (C) Rolle's Theorem (E) Fundamental Theorem of Calculus

(B) Intermediate Value Theorem (D) Fundamental Theorem of Algebra

51. $f(x) = ax^5 + bx^3 + cx + 8$. If f(-3) = 72 then f(3) =A) -56 B) 64 C) -72 D) -80 E) 58

Copyright © 2013 TMSCA

TMSCA 13-14 HSMA Test 7

52. The polar coordinates of point P are $\left(-6, \frac{3\pi}{4}\right)$. If point P is converted to rectangular coordinates, where					
	on the Cartesian coord B) QII	· · ·	?	QIV	E) x - axis
53. What is the angle	between the vectors \langle	2,-5 and	$\langle -1, -8 \rangle$ (nearest	t degree)	
A) 151°	B) 84°				E) 96°
<i>,</i>	bases of a frustum are	,	,	-	,
	in^2 . Find the volume of				
	B) $2108\pi \text{ in}^3$			4216π in ³	E) $\frac{2108\pi}{3}$ in ³
55. Find $8 - \frac{8^3}{3!} + \frac{8^5}{5!}$.	. correct to 4 decimal p	places.			
	B) -0.1455	C) 0.98	94 D)	-6.7997	E) 0.1392
56. A particular model of car has an advertised gas mileage of 32 mpg for in-town driving. Upon investigation, a consumer discovers that the gas mileage is normally distributed with a standard deviation of 3 mpg. What is the probability that the driver will get over 33 mpg for in-town driving?					
A) 16%	B) 63%	C) 84%	D)	37%	E) 27%
57. The diameters of the concentric circles on the right are 10 cm, 8 cm and 4 cm. If a dart hits the figure at random, what is the probability that it will not land in the shaded area?					
A) 0.64 B)) 0.48 C) 0.3	36	D) 0.52	E) 0.56	
58. In triangle <i>ABC</i> , the 3 medians intersect at point <i>M</i> . If $AM = 18$ in, and point <i>P</i> is the midpoint of \overline{BC} then the length of the median from point <i>P</i> is					
A) 12 in	B) 36 in	C) 15 in	n D)	24 in	E) 27 in
59. $f(x) = x^{e^x}$. Fin					
A) $e^x x^{e^x-1}$	C)	$e^{x}\left(\frac{1}{x} + \ln n\right)$	x	E) $e^{x}x^{e^{x+1}}$	
B) $e^x x^{e^x} \left(\frac{1}{x} + \ln x\right)$	c) D)	$e^{x}x^{e^{x}}(x+$	$\ln x$)	В	
60. On the circle with center F, EC = 7AE. The area of triangle ABC is 108 cm ² .					

Find the area of the shaded region.

A) 94.5 cm^2

B) 40.5 cm^2 C) 81 cm^2 D) 84 cm^2

Copyright © 2013 TMSCA

E) 96 cm^2

Page 5

С

2013-2014 TMSCA Mathematics Test Seven Answers

1. C	21. B	41. D
2. A	22. D	42. A
3. E	23. E	43. B
4. C	24. C	44. A
5. C	25. A	45. B
6. A	26. B	46. A
7. D	27. C	47. C
8. D	28. D	48. A
9. B	29. B	49. D
10. E	30. D	50. B
11. B	31. D	51. A
12. B	32. B	52. D
13. D	33. B	53. C
14. C	34. B	54. D
15. C	35. A	55. C
16. A	36. D	56. D
17. C	37. E	57. D
18. D	38. A	58. E
19. D	39. B	59. B
20. B	40. C	60. C

3. $p(A \cup B) = p(A) + p(B) - p(A) \cdot p(B)$	38. $_{6}C_{4}(2x)^{4}\left(\frac{4}{x^{2}}\right)^{6} = 3840$	
for independent events. So	$56{6}C_{4}(2x)\left(\frac{1}{x^{2}}\right) = 5640$	
$0.7875 = 5p(B) + p(B) - 5(p(B))^{2}$	42. The hermonic mean is the perellel that	
Solve quadratic for $p(B) = 0.15$	42. The harmonic mean is the parallel that passes through the intersection of the diagonals.	
4. The segment parallel to the bases of the trapezoid that has the length of the geometric mean of the bases divides the trapezoid into two similar trapezoids, so $\frac{4.5}{6.3} = \frac{FB}{15.4}$ and $FB = 11$.	$PQ = \frac{2(24)(30)}{(24+30)} = \frac{80}{3}$ 53. The angle between the vectors can be found using the two definitions of dot product.	
8. $x^3 - y^3 = (x - y)(x^2 + xy + y^2)$ and	$\frac{(2)(-1) + (-5)(-8) =}{\sqrt{2^2 + (-5)^2} \cdot \sqrt{(-1)^2 + (-8)^2} \cos \theta}$	
$(x-y)^2 = x^2 - 2xy + y^2$, so $(x-y)^2 = x^2 - 2xy + y^2$, so	So $\theta \approx 29^\circ$.	
$x^{3} - y^{3} = (-5)(25 + 3 \cdot 37) = -680$		
17. $A = \frac{2I+P}{2} - 1 = \frac{10+9}{2} - 1 = 8.5$ square units on the diagram, but if the linear scaling is 1:6, then the area scaling is 1:36	54. The volume of a frustum is equal to the product of the Heronian mean of the bases and the height of the frustum. $248\pi(17) = 4216\pi$	
so the area is $8.5(36) = 306$ square units.	55. MacClaurin series for sine. sin 8 ≈ 0.9894	
18. $\int_{6}^{12} [3f(x) + 5] dx = 3 \int_{6}^{12} f(x) dx + \int_{6}^{12} 5 dx$ $= 3(19.5) + 30 = 88.5$	56. The heights of triangles ABC, EBF and EFD are all equal. The bases of EBF and EFD are each $\frac{3}{8}$ of the base of ABC,	
21. There are 10 total letters with 3 letters that each repeat twice, so the number of arrangements = $\frac{10!}{(2!)(2!)(2!)} = 453600$.	so the area of the shaded region is $2\left(\frac{3}{8}\right)108 = 81$	
22. $x^2 - 2x - 15 = (x - 5)(x + 3)$, so f(-3) = f(5) = 0 and $5^3 + 5^2(a - 5) + 5(1 - 4a) - 30 = 0$ solve linear equation to get $a = 5$.		
29. The Heronian mean 1/3 of the way from the arithmetic mean to the geometric mean. Here the difference is 578. So the Heronian mean is $1250 - \frac{578}{3} = \frac{3172}{3}$.		
30. Use law of cosines to set up quadratic $10.44^2 = AC^2 + 12^2 - 2(AC)12\cos 60$. The smaller solution is about 5 so the smaller area is $0.5(12)(5)\sin 60 = 15\sqrt{3}$.		