

## TMSCA HIGH SCHOOL MATHEMATICS TEST#8© JANUARY 21, 2017

## **GENERAL DIRECTIONS**

- 1. About this test:
- A. You will be given 40 minutes to take this test.
- B. There are 60 problems on this test.
- 2. All answers must be written on the answer sheet/Scantron form/Chatsworth card provided. If you are using an answer sheet, be sure to use **BLOCK CAPITAL LETTERS**. Clean erasures are necessary for accurate grading.
- 3. If using a scantron answer form, be sure to correctly denote the number of problems not attempted.
- 4. You may write anywhere on the test itself. You must write only answers on the answer sheet.
- 5. You may use additional scratch paper provided by the contest director.
- 6. All problems have **ONE** and **ONLY ONE** correct [BEST] answer. There is a penalty for all incorrect answers.
- 7. Calculators used on this test must be conform to the UIL standards. Graphing calculators are allowed. Calculators need not be cleared.
- 8. All problems answered correctly are worth **SIX** points. **TWO** points will be deducted for all problems answered incorrectly. No points will be added or subtracted for problems not answered.
- 9. In case of ties, percent accuracy will be used as a tie breaker.

TMSCA TMSCA

| 1.                                                                                                                                                                                                                                                                                                                                                             | What                                                                                                                                                                                                                                                                                                    | What is $0.58333 \div 0.125 + 1.875 - 0.41666 \times 1.6$ |            |                    |              |                                                                   |               |                       |            |                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------|--------------------|--------------|-------------------------------------------------------------------|---------------|-----------------------|------------|----------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                | <b>(A)</b>                                                                                                                                                                                                                                                                                              | $\frac{47}{8}$                                            | <b>(B)</b> | $-\frac{3}{8}$     | ( <b>C</b> ) | <b>49</b><br><b>8</b>                                             | <b>(D)</b>    | 7                     | <b>(E)</b> | $\frac{109}{24}$                 |
| 2.                                                                                                                                                                                                                                                                                                                                                             | Gemma started her weekend with \$150. She spent \$27.72 eating out on Friday night and \$11.75 on a movie Saturday. On Sunday, she bought 2 books for \$7 each, 1 DVD for \$22.50 and a coffee drink for \$4.75. If the tax on the books, DVD and coffee was 8.25%, how much money did Carla have left? |                                                           |            |                    |              |                                                                   |               |                       |            |                                  |
|                                                                                                                                                                                                                                                                                                                                                                | <b>(A)</b>                                                                                                                                                                                                                                                                                              | \$84.12                                                   | <b>(B)</b> | \$69.28            | <b>(C)</b>   | \$76.28                                                           | <b>(D)</b>    | \$65.88               | <b>(E)</b> | \$73.72                          |
| 3.                                                                                                                                                                                                                                                                                                                                                             | •                                                                                                                                                                                                                                                                                                       | 3)(x-7) = (x-7) The equality of equality                  | , ,        | (+3) and $9(2)$    | x + 7) :     | = (2x+7)9  a                                                      | are exa       | mples of the          |            |                                  |
|                                                                                                                                                                                                                                                                                                                                                                | <b>(A)</b>                                                                                                                                                                                                                                                                                              | associative                                               | <b>(B)</b> | commutative        | <b>(C)</b>   | addition                                                          | <b>(D)</b>    | distributive          | <b>(E)</b> | multiplication                   |
| 4. Travelling via I-45, the distance between Houston and Dallas is 238 miles. Kathalee drove f Houston to Dallas on I-45 at an average speed of 72 mph. Meanwhile, Bill left Houston and through Waco then on to Dallas for a total trip distance of 273 miles at an average speed of What was the positive difference in their travel times? (nearest minute) |                                                                                                                                                                                                                                                                                                         |                                                           |            |                    |              | n and travelled                                                   |               |                       |            |                                  |
|                                                                                                                                                                                                                                                                                                                                                                | <b>(A)</b>                                                                                                                                                                                                                                                                                              | 71 min                                                    | <b>(B)</b> | 43 min             | <b>(C)</b>   | 18 min                                                            | <b>(D)</b>    | 66 min                | <b>(E)</b> | 38 min                           |
| 5.                                                                                                                                                                                                                                                                                                                                                             | Six workers can paint a wall in 20 minutes. How long will it take four workers at the same individual rate to paint a wall twice as long and twice as high?                                                                                                                                             |                                                           |            |                    |              |                                                                   |               |                       |            |                                  |
|                                                                                                                                                                                                                                                                                                                                                                | <b>(A)</b>                                                                                                                                                                                                                                                                                              | 80 min                                                    | <b>(B)</b> | 180 min            | <b>(C)</b>   | 120 min                                                           | <b>(D)</b>    | 90 min                | <b>(E)</b> | 110 min                          |
| 6.                                                                                                                                                                                                                                                                                                                                                             | Which                                                                                                                                                                                                                                                                                                   | h of the follow                                           | ing is     | not a one-to-or    | ne fun       | ction?                                                            |               |                       |            |                                  |
|                                                                                                                                                                                                                                                                                                                                                                | <b>(A)</b>                                                                                                                                                                                                                                                                                              | $y = 3x^5$                                                | <b>(B)</b> | $y = 3x^4$         | ( <b>C</b> ) | $\log(x-8)$                                                       | <b>(D)</b>    | $y = e^{-2x}  (E)$    | ) all      | are one to one                   |
| 7.                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                         | ={l,i,z,a,r,d},<br>nany elements                          |            | {m,u,s,c,r,a,t}    | and a        | $\mathbf{H} = \{\mathbf{h}, \mathbf{e}, \mathbf{r}, \mathbf{o}\}$ | ,n} the       | $n (L \cup M) \cap ($ | $M \cup A$ | H) contains                      |
|                                                                                                                                                                                                                                                                                                                                                                | <b>(A)</b>                                                                                                                                                                                                                                                                                              | 6                                                         | <b>(B)</b> | 7                  | <b>(C)</b>   | 5                                                                 | <b>(D)</b>    | 8                     | <b>(E)</b> | 9                                |
| 8.                                                                                                                                                                                                                                                                                                                                                             | Given                                                                                                                                                                                                                                                                                                   | that $\angle P$ is su                                     | pplem      | nentary to ∠Q      | ; <i>m∠</i>  | $R = 52^{\circ}$ ; and                                            | $\angle Q$ is | complementar          | y to 2     | $\angle R$ , find $m \angle P$ . |
|                                                                                                                                                                                                                                                                                                                                                                | <b>(A)</b>                                                                                                                                                                                                                                                                                              | 142°                                                      | <b>(B)</b> | 138°               | <b>(C)</b>   | 42°                                                               | <b>(D)</b>    | 38°                   | <b>(E)</b> | 134°                             |
| 9.                                                                                                                                                                                                                                                                                                                                                             | If p and q are the zeros of the function $f(x) = 15x^2 - 49x - 204$ then $pq^2 + p^2q =$                                                                                                                                                                                                                |                                                           |            |                    |              |                                                                   |               |                       |            |                                  |
|                                                                                                                                                                                                                                                                                                                                                                | <b>(A)</b>                                                                                                                                                                                                                                                                                              | $\frac{3332}{75}$                                         | <b>(B)</b> | $\frac{3332}{225}$ | ( <b>C</b> ) | $\frac{3060}{49}$                                                 | <b>(D)</b>    | $-\frac{3332}{225}$   | <b>(E)</b> | $-\frac{3332}{75}$               |
| 10                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                         | the total volum<br>est gallon)                            | e of a     | right cone giv     | en the       | e radius of the                                                   | e base is     | s 9 ft. and the v     | ertex      | angle is 35°.                    |

(C) 18112 gal

(D) 4887 gal

(E) 13034 gal

(A) 1629 gal

(B) 6792 gal

11. The regular hexagon in the illustration is inscribed in the circle. If a dart thrown at random strikes inside the circle, what are the odds that it will land in the shaded region? (nearest hundredth)



- (A) 0.21
- **(B)** 4.78
- (C) 0.83
- (D) 1.21
- (E) 2.14

- 12. If  $\frac{5x-4}{x-2} + \frac{x-2}{3x-2} = \frac{ax^2 + bx + c}{3x^2 8x + 4}$  then a+b+c
  - (A) -7
- (B) -14
- (C) 2
- (D) -22
- **(E)** 7
- 13. Which of the following prime numbers are considered to be both Mersenne and Germain primes?

(C) II only

I. 3

(B) II & III

- II. 7
- III. 13
- IV. 17
- (E) none of these
- 14. How many distinct 4-letter arrangements can be made with the letters in "MCQUEENEY"?
  - (A) 15,120

(A) I & III

- **(B)** 1044
- (C) 990
- (D) 864

(D) I only

- (E) 840
- 15. The points P(-2,11), Q(6,k) and R(-6,55) are collinear. Find the value of k.
  - (A) 99
- (C) -33
- (D) -55
- (E) -77

- 16. Let  $f(x) = x^3 5$  and  $g(x) = \sqrt[3]{-27x} 1$ . Calculate f(g(-1)).
  - (A) 3
- **(B)** 59
- (C) -2
- (D) -3
- **(E)** 69

- 17. What is the constant term in the expansion of  $\left(x^2 + \frac{3}{r}\right)^{0}$ ?
  - (A) 405
- **(B)** 540
- (C) 1215
- (D) 729
- **(E)** 567

- 18. Determine the range of  $f(\theta) = -3 + 5\cos\left(\frac{4\pi}{3}\theta 2\pi\right)$ .
  - (A) [7,-13]
- (B) [-8,2] (C) [-2,8] (D) [-3,7] (E) [3,-7]

- 19. The intersection of the three medians in a triangle is called the\_\_\_\_\_
  - Incenter
- (B) Orthocenter (C) Center
- (D) Centroid
- **(E)** Circumcenter
- 20. Given that the binomial x+2 is a factor of  $3x^4+35x^3+3ax^2+60x-a$ , calculate the value of a.
  - (A) 32
- **(B)** -16
- (C) -96
- **(D)** -32
- **(E)** 64

- 21. Simplify:  $\tan\left(\frac{\pi}{2} \theta\right) \sin\left(\frac{\pi}{2} \theta\right) \cos\left(\frac{\pi}{2} \theta\right)$ 
  - (A)  $\sin^2 \theta$
- (B)  $-\sin^2 \theta$
- (C)  $\cos^2 \theta$
- (D)  $-\csc^2\theta$
- (E)  $\sin(2\theta)$

22. Using the following array, determine the sum of all the numbers in the 19th row.

| 1   |    |           |    |    | (row 1) |
|-----|----|-----------|----|----|---------|
| 3   | 5  |           |    |    | (row 2) |
| 7   | 9  | 11        |    |    | (row 3) |
| 13  | 15 | <b>17</b> | 19 |    | (row 4) |
| 21  | 23 | 25        | 27 | 29 | (row 5) |
| ••• |    |           |    |    | ()      |

- (A) 6859
- **(B)** 6878
- (C) 6840
- (D) 6175
- **(E)** 6156

23. The ADA recommends that wheelchair ramps have no more than a 5° angle of elevation. Perry needs to build a ramp up to a porch that stands 0.72 meters off the ground. How long should Perry make the ramp itself? (nearest centimeter)

- (A) 213 cm
- (B) 823 cm
- (C) 75 cm
- (D) 826 cm
- **(E)** 518 cm

24. Given the arithmetic sequence  $17, a, b, 27, c, \dots$ , find a+b+c.

- $(A) \quad \frac{217}{3}$
- (C)  $\frac{223}{3}$  (D)  $\frac{209}{3}$  (E)  $\frac{230}{3}$

25. Find the sum of all the x-values of the critical points of  $f(x) = (x+2)^5 (x^2-1)^4$ .

- (A) -2
- (B)  $-\frac{28}{13}$  (C) -3
- (D)  $-\frac{42}{13}$
- (E) -4

26. Find volume of the solid generated when the shaded region bounded by the parabola and the line in the illustration is rotated 360° around the line y = -2. (nearest cubic unit)



- (A) 785
- (B) 3271
- (C) 1041
- **(D)** 5147
- **(E)** 2466

27.  $(212121_3 + 121212_3) \times 2_3 = \underline{\phantom{0}}$ 

- (A) 1440
- **(B)** 1443
- (C) 2222220
- (D) 2886
- **(E)** 1880

28.  $[(2+4+6+8+...+36+38)\times 40]$  ÷  $[(42+44+46+48+...76+78)\times 80]$  = ?

- (A)  $\frac{1}{6}$  (B)  $\frac{1}{12}$  (C)  $\frac{1}{3}$

- 29. If an integral factor of 132, not including 1 or 132 is chosen at random, what are the odds that it is a
- (A)  $\frac{1}{2}$  (B) 1 (C)  $\frac{3}{4}$  (D) 2

- 30. Find  $\lim_{x \to -\infty} \frac{9 + 6x^2 11x^3}{2x^4 7}$

- (A) 0 (B)  $-\frac{11}{7}$  (C)  $\frac{11}{2}$  (D)  $-\frac{11}{2}$  (E) does not exist
- 31. If f''(x) = 24x 6 and f(1) = -48 and f(2) = -80, then f(-1) =\_\_\_\_\_.
  - (A) 78
- **(B)** 55
- (C) -51 (D) -48
- (E) 46
- 32. Ellipse  $\frac{(x-2)^2}{25} + \frac{(y+1)^2}{16} = 1$  has foci  $(x_1, y_1)$  and  $(x_2, y_2)$ . Find the value of  $y_1 + y_2$ .
  - (A) -2
- (B) 2
- (C) -1
- **(D)** 1
- $(\mathbf{E}) \quad \mathbf{0}$
- 33. The coordinates of the vertices of the pentagon shown are all integers. What is the area of the pentagon?



- (A)  $46.5 \text{ units}^2$  (B)  $27 \text{ units}^2$
- (C)  $34.5 \text{ units}^2$
- (D)  $28 \text{ units}^2$
- (E)  $33.5 \text{ units}^2$

- 34. Simplify:  $(a^2 \div b^4)^{-3} \div a^8 \times b^5$ .
- (A)  $\frac{b^{14}}{a^{13}}$  (B)  $\frac{b^7}{a^{14}}$  (C)  $\frac{1}{a^7b^{14}}$  (D)  $\frac{b^{14}}{a^7b^{14}}$
- $\textbf{35. Calculate the sample standard deviation of the set of numbers $\{12,16,28,32,38\}$. (nearest hundredth)}\\$ 
  - (A) 9.77
- **(B)** 10.35
- (C) 9.26
- (D) 9.52
- **(E)** 10.92
- 36. Two years from now, Zack's age will be triple Xerxes age? A year ago, the sum of their ages was 22. How old is Xerxes now?
  - (A) 8
- $(\mathbf{B})$  6
- (C) 16
- $(\mathbf{D})$  5
- (E) 19
- 37. Let  $f_0 = 0$ ,  $f_1 = 1$ ,  $f_2 = 1$ ,  $f_3 = 2$ ,  $f_4 = 3$  be the terms of the Fibonacci sequence. Find  $f_{36}$ .

  - (A) 9,227,465 (B) 14,930,352 (C) 5,702,887
- (D) 24,157,817 (E) 3,524,578

38. In how many distinct ways can a group of nine diners be seated at a round table?

- (A) 40.320
- **(B)** 362,880
- (C) 181,440
- (D) 20,160
- **(E)** 17,280

39. Which of the following functions expresses the area, A, of an equilateral triangle in terms of the length of the apothem, a?

- (A)  $A = \frac{3a^2\sqrt{3}}{2}$  (B)  $A = 3a^2\sqrt{3}$  (C)  $A = \frac{a^2\sqrt{3}}{4}$  (D)  $A = \frac{3a^2\sqrt{3}}{4}$  (E)  $A = \frac{a^2\sqrt{3}}{2}$

40. A fair tetrahedral die with sides numbered 1, 2, 3 and 4 is rolled and the number on the down side is recorded? What is the expected value of a single roll?

- (A)  $\frac{3}{2}$  (B)  $\frac{5}{2}$  (C)  $\frac{5}{4}$  (D)  $\frac{7}{2}$

41. If  $\begin{bmatrix} 3 & -3 \\ a & 6 \end{bmatrix} \times \begin{bmatrix} 7 & b \\ 2 & -7 \end{bmatrix} = \begin{bmatrix} 15 & 30 \\ -2 & -48 \end{bmatrix}$  then a+b=?

- (A) 2
- (B) -3
- (C) -1
- $(\mathbf{D})$  3
- 1 **(E)**

42. The function  $f(x) = \frac{2x^2 - 9x - 35}{4x^2 - 25}$  has a removable discontinuity at the point (a,b). What is the value of b?

- (A) -2.5
- $(\mathbf{B}) \quad \mathbf{0}$
- (C) -9.5
- (D) 0.95
- -0.25**(E)**

43. The number 567 in base 8 is equivalent to the number k in base 4. Find the sum of the digits in the number k.

- (A) 9
- (B) 8
- (C) 7
- **(D)** 11
- **(E)** 12

44.  $(-2-3\sqrt{-20})(7\sqrt{-8})$ 

- (A)  $84\sqrt{10} + 28\sqrt{2}i$
- (B)  $168\sqrt{5} 28\sqrt{2}i$
- (C)  $-84\sqrt{10} + 28\sqrt{2}i$

- (D)  $168\sqrt{5} 28i\sqrt{2}$
- (E)  $84\sqrt{10} 28\sqrt{2}i$

45. The lengths of the sides of triangle PQR are the roots of  $f(x) = x^3 - 19x^2 + 108x - 162$ . Find the area of triangle PQR. (nearest tenth)

- (A) 62.9
- (B) 22.3
- (C) 4.7
- (D) 9.5
- **(E)** 7.9

46. How many integral values of *n* exist such that  $n \ge 1$  and  $\frac{(n+4)!}{(n+1)!} \le 250$ 

- (A) 1
- **(B)**
- (C) 3
- (D) 5
- **(E)** 8

- 47. Simplify:  $(3\log_7 X 3\log_7 Y) + (\log_7 Y^2 4\log_7 X^3)$ 
  - (A)  $\log_7\left(\frac{1}{V^9}\right)$  (B)  $\log_7\left(\frac{1}{V^9V}\right)$  (C)  $\log_7\left(\frac{Y}{V^9}\right)$  (D)  $\log_7\left(X^9Y\right)$  (E)  $\log_7\left(X^{12}\right)$
- 48. If  $f(x) = 3x^2 4x$ , then  $\lim_{h \to 0} \frac{f(6+h) f(6-h)}{2h}$  is
- **(B)** 32
- (C) 26
- $(\mathbf{D})$  6
- (E) undefined

- 49. If  $\frac{x+9}{x-9} + \frac{x-9}{x+9} = 2 + \frac{B}{(x-9)(x+9)}$  where  $B \in \mathbb{Z}^+$  then B = ?
  - (A) 81
- **(B)** 162
- (C) 81
- (D) 324
- **(E)** 648

- 50. If  $x \frac{1}{r} = 21$ , then  $x^3 \frac{1}{r^3} = ?$ 
  - (A) 9303
- **(B)** 9282
- (C) 9324
- **(D)** 9261
- **(E)** 8860
- 51. Dairy Joy Ice Cream Parlor has 3 types of cones and 8 flavors of ice cream. How many distinct 3scoop cones could a customer order?
  - **(A)** 360
- **(B)** 1001
- (C) 210
- **(D)** 495
- **(E)** 120
- 52. The repeating decimal 0.4333... in base 5 can be written as which of the following fractions in base 5 simplified form?
- (A)  $\frac{32}{40}$  (B)  $\frac{31}{20}$  (C)  $\frac{4}{10}$  (D)  $\frac{2}{10}$  (E)  $\frac{34}{40}$
- 53.  $\overline{AC}$  and  $\overline{EC}$  are both secants of the circle shown. Find  $\widehat{mBD}$  if  $\widehat{mAE} = 131^{\circ}$  and  $\widehat{m} \angle C = 35^{\circ}$ .



- (A) 48°
- (B) 61°
- (C) 39°
- (D) 59°
- **(E)**
- 54. Find the range, or ranges of values k can take for  $kx^2 8x + 10 k = 0$  to have two distinct rational solutions.
  - (A) (2,8)

- (B)  $\left(-\infty,-12\right)\cup\left(4,\infty\right)$  (C)  $\left(-\infty,2\right)\cup\left(8,\infty\right)$

(D) (-8,-2)

- (E)  $(-\infty, -8) \cup (-2, \infty)$
- 55. Find  $8 \frac{8^3}{21} + \frac{8^5}{51} \frac{8^7}{71}$ ... correct to 4 decimal places.
  - (A) 195.7333
- (B) **-6.7997**
- (C) -0.1455
- **(D)** 0.9894
- **(E)** 0.1392

56. How many 3-digit numbers can be made with the digits 0, 0, 2, 4, 6 and 8?

- (A) 52
- **(B)** 48
- (C) 26
- (D) 96
- (E) 54

57. Find the shortest distance between the x-intercept of the line 3x + 7y = 21 to the line 5x - 6y = -48. (nearest tenth)

- (A) 4.6
- (B) 10.6
- (C) 7.7
- **(D)** 4.5
- (E) 8.1

58. If  $h(x) \le f(x) \le g(x)$  for all x in an open interval containing c, except possibly at c itself, and if  $\lim_{x \to c} h(x) = L = \lim_{x \to c} g(x)$  then  $\lim_{x \to c} f(x)$  exists and is equal to L. This theorem is known as:

- (A) Sandwich Theorem
- (B) Rolle's Theorem
- (C) Fundamental Theorem of Calculus
- (D) Intermediate Value Theorem (E) Fundamental Theorem of Algebra
- **59.** Given the pentagram shown, find a if b = 8". (nearest tenth)
  - (A) 7.6 in
- (B) 4.2 in
- (C) 2.4 in
- (D) 6.2 in
- (E) 4.9 in



60. Let  $f(x) = ax^4 + bx^2 + x - 8$  and f(-6) = 27. Calculate f(6).

- (A) 33
- **(B)** 41
- (C) 39
- (D) -43
- (E) 47

## **Test Eight Answer Key**

| 1. A  | <b>21.</b> C | 41. E |
|-------|--------------|-------|
| 2. D  | 22. A        | 42. D |
| 3. B  | 23. D        | 43. A |
| 4. B  | <b>24.</b> C | 44. E |
| 5. C  | 25. D        | 45. E |
| 6. B  | <b>26.</b> E | 46. C |
| 7. B  | 27. D        | 47. B |
| 8. A  | 28. A        | 48. B |
| 9. E  | 29. B        | 49. D |
| 10. C | <b>30.</b> A | 50. C |
| 11. B | 31. E        | 51. A |
| 12. C | 32. A        | 52. E |
| 13. D | 33. D        | 53. B |
| 14. B | <b>34.</b> E | 54. C |
| 15. E | 35. E        | 55. D |
| 16. A | 36. D        | 56. A |
| 17. C | 37. B        | 57. B |
| 18. B | 38. A        | 58. A |
| 19. D | 39. B        | 59. E |
| 20. A | 40. B        | 60. C |
|       |              |       |

## **Test Eight Select Solutions**

5. Each worker works at a rate of 1/120 of the wall per minute. To paint a wall with four times the area, it will take

for workers  $\frac{4}{\frac{1}{120} + \frac{1}{120} + \frac{1}{120} + \frac{1}{120}} = 120$  minutes.

9.  $pq^2 + p^2q = pq(q+p)$  which is the sum of the roots times the product of the roots or for a quadratic

 $\frac{c}{a} \left( -\frac{b}{a} \right) = \frac{-204}{15} \left( -\frac{-49}{15} \right) = -\frac{3332}{75} .$ 

14. There are three distinct groups of arrangements to count, no repeats, 2-E arrangements and 3-E arrangements:

 $_{7}P_{4} + (_{6}C_{2})\left(\frac{4!}{2!}\right) + (_{6}C_{1})\left(\frac{4!}{3!}\right) = 1044.$ 

17. The constant term using binomial theorem is

 $({}_{6}C_{2})(x^{2})^{2}(\frac{3}{x})^{4}=1215.$ 

20. Evaluate f(-2) = 48 + (-280) + 12a - 120 - a = 0 then a = 32.

21.  $\tan\left(\frac{\pi}{2} - \theta\right) = \cot \theta$ ,  $\sin\left(\frac{\pi}{2} - \theta\right) = \cos \theta$  and

$$\cos\left(\frac{\pi}{2} - \theta\right) = \sin\theta$$
, so

 $\tan\left(\frac{\pi}{2} - \theta\right) \sin\left(\frac{\pi}{2} - \theta\right) \cos\left(\frac{\pi}{2} - \theta\right) = \frac{\cos\theta}{\sin\theta} (\cos\theta) (\sin\theta) = \cos^2\theta.$ 

- 22. The sum of the number in each row is the perfect cube of the row number for  $19^3 = 6859$ .
- 26. First, find the equations of both the parabola and line:  $y_1 = -\frac{1}{2}x^2 x + 12$  and  $y_2 = -x + 4$ , then use the washer

method to set up the volume

$$\pi \int_{-4}^{4} \left[ \left( y_1 + 2 \right)^2 - \left( y_2 + 2 \right)^2 \right] dx \approx 2466$$

28.  $\frac{\frac{19}{2}(2+38)(40)}{\frac{19}{2}(42+78)(80)} = \left(\frac{1}{3}\right)\left(\frac{1}{2}\right) = \frac{1}{6}$ 

37. The nth term is  $\frac{\phi^n}{\sqrt{5}}$  where  $\phi = \frac{1+\sqrt{5}}{2}$  (golden ratio) or

 $f_{36} = \frac{\phi^{36}}{\sqrt{5}} = 14,930,352$ .

- 38. Nine people in a row can be seated in 9! ways, but at a round table, rotations of the same order do not count as distinct arrangements so the total number of arrangements is (n-1)! = 8! = 40,320.
- 40. On a fair die, each outcome is equally likely, so the expected value of an individual roll is

 $1(0.25) + 2(0.25) + 3(0.25) + 4(0.25) = \frac{5}{2}$ 

- 41. Use the definition of matrix multiplication for 3b+21=30 and 7a+12=-2 then b=3, a=-2 and a+b=1.
- 45. Use Heron's formula where the sum of the roots is 19 and s = 9.5. The area is  $\sqrt{9.5 f(9.5)} \approx 7.9$ .
- 48. This is the definition of the derivative of  $f(x) = 3x^2 4x$  when x = 6 for 36 4 = 32.
- 49. Use the number sense relationship  $\frac{p}{q} + \frac{q}{p} = 2 + \frac{(p-q)^2}{pq}$

for  $B = 18^2 or (-18)^2 = 324$ 

50.  $\left(x - \frac{1}{x}\right)^2 = x^2 - 2 + \frac{1}{x^2} = 441$  so  $x^2 + \frac{1}{x^2} = 443$ . Finally,

$$x^3 - \frac{1}{x^3} = \left(x - \frac{1}{x}\right)\left(x^2 + 1 + \frac{1}{x^2}\right) = 21(444) = 9324.$$

51.  $3 \times (_{8+3-1}C_3) = 360$ .

 $10_5 n = 4.333..._5$ 

52.  $\frac{n = 0.433..._5}{4n = 3.4_5}$  and  $n = \frac{3.4}{4_5} = \frac{34}{40_5}$ . This cannot be

simplified because in base 10 the equivalent fraction is  $\frac{19}{20}$ .

- 53.  $\frac{131^{\circ} m\widehat{BD}}{2} = 35^{\circ}$  for  $m\widehat{BD} = 61^{\circ}$ .
- 54. Use the discriminant  $(-8)^2 4(k)(10-k) > 0$ .
- 55. This is the Maclaurin Series expansion of  $\sin 8 \approx 0.9894$ .
- 57. Use the distance between a point and a line for (7,0)

and 5x - 6y + 48 = 0 for  $d = \frac{|5(7) + 0(-6) + 48|}{\sqrt{25 + 36}} \approx 10.6$