

TMSCA HIGH SCHOOL MATHEMATICS TEST #8 © JANUARY 25, 2014

GENERAL DIRECTIONS

1. About this test:

- A. You will be given 40 minutes to take this test.
- B. There are 60 problems on this test.
- All answers must be written on the answer sheet/Scantron form/Chatsworth card provided. If you are using an answer sheet, be sure to use **BLOCK CAPITAL LETTERS**. Clean erasures are necessary for accurate grading.
- 3. If using a scantron answer form, be sure to correctly denote the number of problems not attempted.
- 4. You may write anywhere on the test itself. You must write only answers on the answer sheet.
- 5. You may use additional scratch paper provided by the contest director.
- 6. All problems have **ONE** and **ONLY ONE** correct [BEST] answer. There is a penalty for all incorrect answers.
- 7. Calculators used on this test must be conform to the UIL standards. Graphing calculators are allowed. Calculators need not be cleared.
- 8. All problems answered correctly are worth **SIX** points. **TWO** points will be deducted for all problems answered incorrectly. No points will be added or subtracted for problems not answered.
- 9. In case of ties, percent accuracy will be used as a tie breaker.

TMSCA TMSCA

2013 – 2014 TMSCA High School Mathematics Test 8								
1. (0.525252	\dots) ⁻¹ + (0.017)	$(1717)^{-1} =$						
A) <u>179</u>	B)	537	C)	52173	D)	53163	E)	13425
330		1000	,	364		884		221
2. Events A a	nd <i>B</i> are ind	ependent such that	t p(A	(A) = 0.32 and $p(A)$	$\cup B$	= 0.66. Calculat	te $p($	$(A' \cap B).$
A) 0.50	B)	0.68	C)	0.21	D)	0.34	E)	0.16
3. The full co clerk then including s	ost of a buncl applied a 15 ^o sales tax of 8	n of flowers is \$12 % student discoun .25%?	2.99. t to L	Lesley bought 5 b esley's total bill.	unche How	es with a 60% sale much did Lesley J	disc pay f	ount. The sales or the flowers
A) \$22.08	B)	\$33.12	C)	\$17.58	D)	\$23.90	E)	\$35.86
4. The qualit 57, 64, 55, of this data	y control wo , 68, 59, 57, 6 a set?	rker at the pepper 53, and 60 pepper	mint f mints	actory selected a s respectively. What	ampl at is t	e of eight bags. T he sum of the mea	he ba n, m	ags contained edian and mode
A) 174.625	B)	176.875	C)	175.375	D)	58.968	E)	177.500
5. The coord	inates of poin	nts P and Q are (1	0,9)	and $(-14,3)$ respe	ective	ly. Which of the	follo	wing is an
equation c	of the perpend	dicular bisector of	\overline{PQ} ?	,				
A) $x - 4y =$	-26 B)	4x + y = -2	C)	4x + y = 49	D)	x - 4y = -22	E)	4x + y = -53
6. 52 kilome A) 8667	ters per hour B)	enti 867	meter C)	s per second. (nea 144	rest v D)	vhole number) 87	E)	1444
7. $\frac{4x^2 + 12x}{x^2 - 16}$	$+9 \div \frac{6x^2 + 1}{3x^2 + 1}$	$\frac{9x+15}{7x+20} =$						
A) $2x+3$	B)	x+4	C)	2x+3	D)	x-4	E)	1
о м н :	C 1 1 .	2x+3	1	x-4		2x+3		x-4
8. Mr. Harris	e hands of hi	s clock at that tim	class a	at 3:07 pm. What	was t	the smaller angle f	orme	ed by the hour
A) 42°	B)	55°	C)	48°	D)	38.5°	E)	51.5°
9. $\frac{3x+5}{(x+3)(x)}$	$\frac{A}{x-1} = \frac{A}{x+3} + \frac{A}$	$-\frac{B}{x-1}$. Calculate	A + B	3.				
A) 8	B)	5	C)	3	D)	1	E)	2
10. Given $f($	(x)=3x+2,	$g(x) = x^2 - 1$ and	h(x)	$=\frac{x}{4}$ evaluate $h(x)$	g(f(3))).		
A) 6.5	B)	40	C)	13	D)	30	E)	26
11. Anthony's test and ea test?	s test grades arned a 75%.	vary directly with How long should	the a d he p	mount of time he s lan to study if he v	studie vants	es. He studied for to make a grade of	5 ho of 95	urs for the last % on his next
A) 360 min	utes B)	365 minutes	C)	340 minutes	D)	390 minutes	E)	380 minutes
12. If 4×(9+	3) = 36 + 12	and $36 + 12 = 48$	then 4	$4 \times (9+3) = 48$. T	'his is	an example of		property.
A) Transitiv	ve B)	Associative	C)	Substitution	D)	Reflexive	E)	Symmetric
13. Solve sin	$x^{2} + \sin x \cos x$	$x = 0$ for $0 < x \le 1$	π .					
A) $0, \frac{\pi}{3}, \frac{2\pi}{3}$	B)	$\frac{3\pi}{4},\pi$	C)	$\frac{\pi}{4}, \frac{3\pi}{4}$	D)	$\frac{\pi}{4},\pi$	E)	$\frac{2\pi}{3},\pi$

Copyright © 2013 TMSCA

TM 14.	SCA 13-14 HSMA A total of \$12000 annual interest of \$	A Tes is in \$140	st 8 vested in two bond 0 What is the mo	ls tha	t pay 10.5% and 1 at can be invested i	2% s in the	imple interest. The 10.5% bond?	ie inv	Page 2 vestor wants	
A)	\$8667.00	B)	\$867.00	C)	\$2666.66	D)	\$9333.33	E)	\$1444.00	
15.	15. $\angle A$ and $\angle B$ are complementary and $m \angle B$ is 18° less than three times $m \angle A$. Find the measure of the supplement of $\angle A$.									
A)	153°	B)	27°	C)	135°	D)	117°	E)	63°	
16.	A belt joins two per radius of 30 inches	ulley s and	s. The smaller with the	th a r rmp.	adius of 24 inches	is ro	tating at 45 rpm.	The l	arger has a	
A)	30	В)	30	C)	48	D)	5 6	E)	42	
1/.	A cylindrical tank tank? (nearest gall	with on)	a radius of 4 ft. at 2008	nd de	2106	full (of water. How ma	iny g	allons are in the	
A)	1804	В)	3008	C)	2100	D)	1930	E)	1203	
18.	Given $y = x + 7$ as	nd x	y = 22, calculate y	$r^{3} - y$, ² . 651		190	E)	050	
A)	-497	Б)	-005	C)	-031	D)		E)	-939	
19.	The dots are 5 unit	ts ap	art vertically and r	lor1Z0	ontally. Find the a	rea o	i the shaded regio	n.		
A)	200 units ² B)	193.	5 units ² C) 181.	5 uni	ts^2 D) 190.5 uni	its ²	E) 187.5 units ²			
20.	Given the Fibonac	ci-ty	pe sequence: -5, a	ı, b, 7	7, c, d, 23, calculat	e a +	b + c.		· · · · N	
A)	24	B)	15	C)	22	D)	14	E)	8	
21.	Evaluate: $\lim_{x \to 0} \frac{\tan x}{x}$	$\frac{x}{2}$.								
A)	1	B)	-1	C)	∞	D)	-∞	E)	does not exist	
22.	The function $f(x)$) sha	own below is perio	dic a	nd has a domain ($0 \le x$	≤ 40 . How many	solut	tions are there to	
	the equation $f(x)$	= 2	? 4							
			2					1		
			0	3	6	9	12		15 18	
A)	6	B)	12	C)	13	D)	14	E)	9	
23.	23. Find the value of k for which the system of equations $\frac{2x - ky = 2}{3x + (k+1) - 4}$ has no solutions.									
A)	5	B)	2	C)	5	, D)	2	E)	0	
	$\overline{2}$		$-\frac{1}{5}$		$-\frac{1}{2}$		5			
24.	The graph of the e	quat	ion $4x^2 + 3y^2 + 8x$	-24	$y + 51 = 0$ is $a(n)$ _					
A)	Parabola	B)	Circle	C)	Rational	D)	Hyperbola	E)	Ellipse	
25.	25. Find the constant term in the binomial expansion of $\left(x - \frac{2}{x^3}\right)^{12}$.									
A)	-13824	B)	220	C)	4096	D)	-1760	E)	59136	
26.	Simplify: $(\cos x +$	- sin .	$x)(\cos x - \sin x).$							
A)	1	B)	$\cos 2x$	C)	$\sin 2x$	D)	$\tan 2x$	E)	0	

Copyright © 2013 TMSCA

TMSCA 13-14 HSMA Test 8 27. Find PQ.

A)
$$\frac{192}{7}$$
 cm B) 28 cm C) $\frac{200}{7}$ cm D) $16\sqrt{3}$ cm E) $\frac{56+16\sqrt{3}}{3}$ cm

28. Eight circles in a rectangle are congruent. Each circle is tangent to the adjacent circles and the outer six circles are tangent to the rectangle. A dart lands somewhere inside the rectangle. What is the probability it lands in a circle?

A) 77% B) 67% C) 70% D) 65% E) 72% 29. Determine the concavity of the graph of $f(x) = \sin x - \cos x$ at $x = \frac{3\pi}{4}$.

A)
$$-\frac{1}{2}$$
 B) $-\frac{\sqrt{3}+1}{2}$ C) $-\sqrt{2}$ D) $\frac{\sqrt{2}}{2}$ E)

30. *P* and *Q* are the zeros of $f(x) = 6x^2 - x - 35$. Calculate $P^4 - 4P^3Q + 6P^2Q^2 - 4PQ^3 + Q^4$. A) 1 B) 707281 C) 707281 D) 1 E)

- A)
 1
 B)
 707281 C)
 707281 D)
 1
 E)
 707281

 11296 1500625 50625 50625 50625 1296

 $31.\ 1331_b = ___{b+1}$, where b > 4.
 b > 4.
 b > 4.
 b > 4.
 b > 4.
- A) 4000 B) 401 C) 1000 D) 1220 E) 1001
- 32. The real number solution set for $3|4-5x| \le 9$ is

A)	$\left(-\infty,-\frac{1}{5}\right]\cup\left[\frac{7}{5},\circ\right]$	∞	B) $\left[-\frac{7}{5},\frac{1}{5}\right]$	C) (-	$-\infty, -\frac{7}{5} \bigg] \cup \bigg[-\frac{1}{5}, \circ$	•) I	D) $\left[\frac{1}{5}, \frac{7}{5}\right]$ H	E) $\left(-\infty\right)$	$\left[,-\frac{7}{5}\right]\cup\left[-\frac{1}{5},\infty\right]$
33.	A 15-oz bag of gr	ounc	l coffee is made	up of 3	0% decaf ground	ls. Ho	w many ounce	es of deca	af grounds need
	to be added to create	ate a	50% mixture?						
A)	6	B)	7	C)	7.5	D)	5	E)	10.5
34. A standard 52-card deck of playing cards is thoroughly shuffled and 3 cards are dealt face up on a table. What are the odds that all three are spades?									
A)	11	B)	1	C)	1	D)	169	E)	11
	839		64		<u>63</u>		10031		850
35.	Given triangle AB (nearest degree)	C ha	s an area of 82 c	cm^2 , AB	B = 20 cm, BC = 3	32 cm	and $m \angle CAB$	>90°, fin	d $m \angle ABC$.
A)	15°	B)	83°	C)	7°	D)	75°	E)	22°
36.	$\log_a 7 = P$, $\log_a 3$	=Q	and $\log_a 2 = R$.	Write	$\log_a 36.75$ in ter	ms of	P, Q and R .		
A)	2P+Q	B)	$P^2 + Q$	C)	$P^2 + Q - R^2$	D)	PQ	E)	2P+Q-2R
	2R		$\overline{R^2}$				\overline{R}		
37.	What is the angle	betw	een the vectors	(-8,17)	and $\langle 11, 5 \rangle$? (ne	arest	degree)		
A)	84°	B)	89°	C)	91°	D)	132°	E)	96°
38.	The graph of the p	olar	equation $r = 7 + 1$	$+7\sin\theta$	is a				
A)	Ellipse	B)	Rose Curve	C)	Cardioid	D)	Lemniscate	E)	Circle
39.	What is the slope	of the	e line normal to	the grap	ph of $2x^2 + y^2 = 3$	34 at	(3,4)?		
A)	2	B)	3	C)	2	D)	8	E)	3
	$\frac{-}{3}$		$\overline{2}$		3		3		$\frac{-}{2}$
				Copyrig	ght © 2013 TMS	CA			

 $\frac{1+\sqrt{3}}{2}$

ΤM	ISCA 13-14 HSMA	A Tes	st 8						Page 4
40.	$\sin\theta < 0$ and $\sec\theta$	$\theta < 0$. The terminal ray	y for	θ lies in	· .	0.0.1	T	• • . • .
A)	QI	B)	QII	C)	QIII	D)	QIV	E)	indeterminate
41	A fair coin is tosse	ed siz	x times. What is the	he pr	obability of at leas	t fou	r consecutive head	ls?	
A)	$\frac{15}{11}$	B)	$\frac{11}{11}$	C)	$\frac{1}{2}$	D)	$\frac{11}{11}$	E)	$\frac{3}{3}$
	64	. .	32	•)	8	-	21		32
42.	The coordinates of	f tria	ngle PQR are (-3)	,2),	(1,5) and $(1,-1)$.	The	coordinates of the	ince	nter are (x, y) .
A)	Find y. 2	B)	15	\mathbf{C}	1	D)	0.5	E)	0.25
A)	2	D)	1.5	C) 7		D)	0.5	L)	0.25
43	How many solutio	ns e	xist to the equation	1/x	+5y = 116 such th	at x a	and y are both non 5	-nega	ative integers?
A)	4	B)	3	C)	11	D)	5	E)	0
44.	Three workers car same length but tw	n plas vice a	ster a wall in 5 hou as high?	ırs.	How long will it ta	ake fo	or 4 workers to pla	aster	a wall that is the
A)	10 hours	B)	30 hours	C)	8.5 hours	D)	7.5 hours	E)	9 hours
45.	Find the value of <i>z</i>	x in t	he triangle diagrar	n. (n	earest degree)				\wedge
A)	40° B)	39°	C) 42°		D) 43°		E) 41°	18'	18'
46.	Determine the nur	nber	of non-negative in	ntege	r solutions to $p+q$	q + r	=10.	6'	12'
A)	14	B)	66	C)	210	D)	231	E)	55
47	How many disting	mish	able arrangements	can	be made from the	letter	s "PEPPERMINT	"" ງ ໌	
A)	302400	B)	907200	C)	3628800	D)	1209600	E)	10886400
48.	The discriminate of	of f	(x) = (2x - 10)(5x)	+3)	is				
A)	736	B)	4336	C)	1936	D)	3136	E)	2700
49.	Find the sum of al	l two	o-digit numbers su	ch th	at reversing the di	gits r	esults in another t	wo-d	igit number that
	is $58\frac{2}{31}\%$ less that	an the	e original.						
A)	204	B)	93	C)	186	D)	164	E)	154
50.	$f(x) = 1 + x - \frac{x^2}{2}$	$-\frac{x^3}{2!}$	$+\frac{x^4}{41}+\frac{x^5}{51}-\frac{x^6}{61}\dots$	Find	the 10^{-8} place of	f(4)			
A)	1	3! B)	4! 5! 6! 6	C)	9	D)	5	E)	2
- 1		D)				D)		11	<i>-</i>
51.	A line passes throu	ugn t	he point $(2.5, -1.5)$	s) an	d has an <i>x</i> -intercep	ot of 4	4. Which of the fo	bllow	ing is an
A)	equation of the lin 53x + 25y = 100	e? B)	25x - 53y = -212	C)	53x - 25y = -100	D)	25x + 53y = -153	3 E)	13x - 15y = 52
52.	52. Point P has polar coordinates $\left(11, \frac{7\pi}{6}\right)$. If point P is converted to rectangular coordinates, where would								
•)	point P lie on the	Carte	esian plane?	\mathbf{C}	OIII		OW	E)	
A)	ŲI	б)	QII	U)	QIII	ע)	QIV	с)	x-ax18
53.	$f(x) = xe^{2x}$. Find	d f'	(x).						
A)	$e^{2x}(x+1)$	B)	$2e^{2x}$	C)	$e^{2x}(2x+1)$	D)	$2xe^{2x-1}$	E)	$2xe^{2x}$
	Copyright © 2013 TMSCA								

TMSCA 13-14 HSMA Test 8

54. Calculate the area of the region defined by $y < 2^{3x}$, y > 0, x > 0, and x < a.

A)
$$\frac{3(2^{3a}-1)}{\ln 2}$$
 B) $\frac{2^{3a-1}}{3}$ C) $\frac{2^{3a}-1}{3\ln 2}$ D) $\frac{2^{3a}-1}{3}$ E) $\frac{2^{3a-1}}{3\ln 2}$

55. The table below shows the effective interest rates on an investment of \$2700 for each of 5 years. What was the average annual interest rate for the 5-year period? (nearest hundredth)

	Year		1		2	-	3		4	1	5
	Percent		2.5%		4%		3.7%		1.1%	-2	%
A) 0	.26%	B)	2.66%	(C)	2.269	%	D)	0.22%	E)	2.20%
56. If	$\frac{x-7}{x+4} + \frac{x+4}{x-7}$ is e	equa	l to the mixe	d numl	ser	$A + \frac{1}{(2)}$	$\frac{B}{x+4)(x-7)}$	•, the	B =		
A) 6-	4	B)	8	(C)	121		D)	24	E)	9
57. Th	e repeating decir	nal (0.363636	in base	7 c	an be	written as w	hich	of the followin	g fractio	ons in base
A) (5	B)	36	(C)	12		D)	12	E)	6
1	17		3437			227			3437		667
58. If	$f(x) = ax^5 + bx^3$	+cx	+9 and $f($	(8) = 15	, fin	nd $f($	-8).				
A) -3	3	B)	3	(C)	7		D)	-7	E)	6
59. Th	e areas of the bas	ses c	of a frustum	are A_1	and	A_2 and	d the height	is 1:	5 inches. The H	Ieroniar	mean of A

and A_2 is 311π in². Find the volume of the frustum. A) 4665π in³ B) 1555 in³ C) $\frac{1555\pi}{3}$ in³ D) 1555π in³ E) $\frac{4665\pi}{2}$ in

60. On the circle with center F, EC = 7AE. The area of triangle ABE is 108 cm^2 . Find the area of the shaded region.

A) 324 cm^2 B) 486 cm^2 C) 648 cm^2 D) 864 cm^2 E) 756 cm^2

2013-2014 TMSCA Mathematics Test Eight Answers

1. D	21. A	41. C
2. D	22. C	42. A
3. D	23. B	43. B
4. B	24. E	44. D
5. B	25. D	45. E
6. E	26. B	46. B
7. C	27. A	47. A
8. E	28. A	48. D
9. C	29. C	49. C
10. D	30. B	50. A
11. E	31. C	51. E
12. A	32. D	52. C
13. B	33. A	53. C
14. C	34. A	54. C
15. A	35. A	55. D
16. A	36. E	56. C
17. E	37. C	57. C
18. B	38. C	58. B
19. A	39. C	59. A
20. B	40. C	60. C

2013-2014 TMSCA Mathematics Test Eight Select Solutions

 $\overline{30. P^4 - 4P^3O + 6P^2O^2} - 4PQ^3 + Q^4$ is 60. Triangles ABE, EBF and EFD all 2. 0.66 = 0.32 + p(B) - 0.32 p(B), so have the same height and EF = 3AE, so p(B) = 0.5 and p(A') = 0.68. the binomial expansion of $(P-Q)^4$ or the area of the shaded region is $p(A' \cap B) = 0.5(0.68) = 0.34$. $108(3)(2) = 648 \text{ cm}^2$ $(Q-P)^4$, which will be $\left(\frac{29}{6}\right)^4$ or 9. Multiplying both sides of the equation $\left(-\frac{29}{4}\right)$ which both equal $\frac{707281}{1296}$. by the common denominator and dividing leaves the equation: 3x+5 = A(x-1) + B(x+3). Letting 42. The lengths of the sides are 5, 5, and 6. x = 1, yields 8 = 4B, so B = 2. Letting For the incenter, x = -3, yields -4 = -4A, so A = 1. $(x, y) = \left(\frac{ax_1 + bx_2 + cx_3}{perimeter}, \frac{ay_1 + by_2 + cy_3}{perimeter}\right),$ A + B = 3. where a, b and c are the lengths of the $A = \frac{4+14}{2} - 1 = 8$ units² on the 19. sides across from their coordinate multipliers. So diagram. Since each linear unit on the $y = \left(\frac{2(6) + 5(5) + (-1)(5)}{16}\right) = 2$ diagram is 5, each square unit is scaled to 25. Area = 8(25) = 200 units². 46. The number of non-negative solutions 21. $\lim_{x \to 0} \frac{\tan x}{x} = \lim_{x \to 0} \frac{\sin x}{x} \cdot \lim_{x \to 0} \frac{1}{\cos x} = 1 \cdot 1 = 1$ to the equation p+q+r=n is the $(n+1)^{th}$ triangular number. So for 23. If the system has no solutions, then p+q+r=10, the number of solutions the determinate of the matrix $\begin{pmatrix} 2 & -k \\ 3 & k+1 \end{pmatrix} = 0$. So, 2k + 2 + 3k = 0. will be $\frac{11(12)}{2} = 66$. $k = -\frac{2}{5}$ $49.1 - \left(58\frac{2}{31}\%\right) = \frac{13}{31}$, so for a number 27. Harmonic mean of the bases. $AB, \frac{13}{31}(10A+B) = 10B+A$. This $PQ = \frac{2(24)(32)}{(24+32)} = \frac{192}{7}$ simplifies to A = 3B. Original 2-digit numbers will be 31, 62 and 93 which have a sum of 186. 28. Let the radius of each 50. This is the MacClaurin series circle be 1. The small expansion of $f(x) = \sin x + \cos x$, so triangles on the $f(4) \approx -1.410446116$ with a 1 in the 10^{-8} diagram are 30-60-90 with hypotenuse 2, so place. the long leg of each is $\sqrt{3}$. This makes the height of the 54. $\int_0^a 2^{3x} dx = \left[\frac{2^{3x}}{3\ln 2}\right]_0^a = \frac{2^{3a} - 1}{3\ln 2}$ rectangle $2+2\sqrt{3}$, while the base is 6. So, $p = \frac{8\pi}{6(2+2\sqrt{3})} \approx 77\%$